Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Противоположными (контрарными) являются суждения Л и Е, которые одновременно не могут быть истинными, но могут быть одновременно ложными.
Истинность одного из противоположных суждений определяет ложность другого: А® ù Е; Е®ù А. Например, истинность суждения «Все офицеры — военнослужащие» определяет ложность суждения «Ни один офицер не является военнослужащим». При ложности же одного из противоположных суждений другое остается неопределенным — оно может быть как истинным, так и ложным: ù А®(Е v ù Е); ù Е®(А v ù А). Так, например, при ложности суждения «Все птицы улетают зимой в теплые края» ему противоположное «Ни одна птица не улетает зимой в теплые края» тоже оказывается ложным. В другом случае при ложности суждения «Ни один судья не является юристом» ему противоположное «Все судьи — юристы» будет истинным. 2. Противоречащими (контрадикторными) являются суждения А и О, Е и I, которые одновременно не могут быть ни истинными, ни ложными. Для противоречия характерна строгая, или альтернативная несовместимость: при истинности одного из суждений другое всегда будет ложным; при ложности первого второе будет истинным. Отношения между такими суждениями регулируются законом исключенного третьего. Если А признается истинным, то О будет ложным (А®ù О); при истинности Е будет ложным I (Е® ù I). И наоборот: при ложности А будет истинным О (ù А®Ю); а при ложности Е будет истинным I (ù Е® I ). Например, если признается истинным суждение «Все принципиальные люди признают свои ошибки», то ложным будет ему альтернативное: «Некоторые принципиальные люди не признают своих ошибок». Следует отметить, что несовместимые единичные суждения могут находиться лишь в отношении противоречия и не могут находиться в отношении противоположности, ибо каждому отдельному предмету может быть либо присущ, либо не присущ определенный признак. Например, суждения «Суд вынес обвинительный приговор по делу Л.» и «Суд не вынес обвинительного приговора по делу Л.» находятся в отношении противоречия: если первое суждение истинно, то признается ложность второго, и наоборот. Сложные суждения Сложные суждения также могут быть сравнимыми и несравнимыми. Несравнимые — это суждения, которые не имеют общих пропозициональных переменных. Например, р Ù q и m Ù n. Сравнимые — это суждения, которые имеют одинаковые пропозиционные переменные (составляющие) и различаются логическими связками, включая отрицание. Например, сравнимыми являются следующие два суждения: «Норвегия или Швеция имеют выход в Балтийское море» ( р v q ); «Ни Норвегия, ни Швеция не имеют выхода в Балтийское море» (ù р Ù ù q ). Хотя эти суждения различны по логической форме (первое из них — дизъюнктивное суждение, а второе — конъюнкция отрицаний, вместе с тем они сравнимы, поскольку включают одинаковые составляющие ( р и q ). Сравнимы также следующие пары суждений: 1) р®q и ù p v q; 2) ù r Ù s и ù (r Ù s); 3) ù m Ù ù n и ù (m Ù n). Наличие в каждой паре общих переменных позволяет сопоставлять их по смыслу и устанавливать истинность отношения. Сложные сравнимые суждения могут быть совместимыми и несовместимыми. Отношение совместимости. К совместимым относятся такие сравнимые суждения, которые одновременно могут быть истинными. Как и в случае простых суждений, различают три вида совместимости сложных суждений: эквивалентность, частичная совместимость и подчинение. 1. Эквивалентные — это суждения, которые принимают одни и те значения, т.е. одновременно являются либо истинными, либо ложными. На таблице (рис. 38) показано эквивалентное отношение между сложными суждениями: А и В — схемы суждений; знак(º )— отношение эквивалентности.
1-я и 4-я строки таблицы показывают, что А и В одновременно принимают одинаковые значения — И и Л; зачеркнутые 2-я и 3-я строки показывают, что эквивалентные суждения одновременно не могут принимать различные значения. Отношение эквивалентности позволяет выражать одни сложные суждения через другие — конъюнкцию через дизъюнкцию или импликацию, и наоборот. Приведем четыре известные эквивалентности, которые являются законами логики. 1) Выражение конъюнкции через дизъюнкцию: ù (АÙ В)º ù А v ù В 2) Выражение дизъюнкции через конъюнкцию: " 1 (A ù (АÚ В)º ù А Ù ù В Эти две эквивалентности называются законами де Моргана. 3) Выражение импликации через конъюнкцию: ù (А®В)º ù А Ù ù В 4) Выражение импликации через дизъюнкцию: А®Вº ù A v B 2. Частичная совместимость характерна для суждений, которые могут быть одновременно истинными, но не могут быть одновременно ложными. Отношение частичной совместимости для сложных суждений показано на таблице (рис. 39), где А и В — схемы сложных суждений; ( v ) — знак частичной совместимости. 1-я строка таблицы говорит об одновременной истинности А и В; 2-я и 3-я — несовпадение значений; 4-я строка зачеркнута, поскольку исключается одновременная ложность А и В. 3. Подчинение между суждениями имеет место в том случае, когда при истинности подчиняющего подчиненное всегда будет истинным. На таблице (рис. 40) показано отношение подчинения между сложными суждениями: А и В — схемы суждений; (®) — знак подчинения. 1-я строка показывает, что в случае истинности А истинным является и В. В 3-й и 4-й строках А является ложным, а В принимает произвольные значения. 2-я строка в таблице зачеркнута, поскольку отношение подчинения исключает ложность подчиненного В при истинности подчиняющего А. Отношение логического подчинения, позволяющее по истинности подчиняющего суждения определить истинность подчиненного, составляет основу фундаментального в науке логики понятия логического следования, регулирующего все виды рассуждений. Отношение несовместимости. Несовместимыми являются суждения, Которые одновременно не могут быть истинными. Из двух видов несовместимости одна — противоположность, другая — противоречие. Противоположность — отношение между суждениями, которые одновременно не могут быть истинными, но могут быть одновременно ложными. В таблице (рис. 41) показано отношение противоположности между суждениями: А и В — схемы суждений; ( ) — знак логической противоположности. 1-я строка таблицы зачеркнута. Это означает, что оба суждения одновременно не могут быть истинными; 2-я и 3-я строки показывают, что суждения могут принимать исключающие значения; 4-я строка — оба суждения могут быть ложными. Это значит, что при ложности одного из противоположных суждений нельзя установить значения другого: оно может быть как истинным, так и ложным. 2. Противоречие — отношение между суждениями, которые одновременно не могут быть ни истинными, ни ложными. При истинности одного из них другое будет ложным, а при ложности первого второе будет истинным. Противоречащие отношения между сложными суждениями показаны на таблице (рис. 42); А и В — схемы сложных суждений ( Ú )— знак отношения противоречия. Вычеркнутые 1-я и 4-я строки показывают, что А и В могут принимать лишь альтернативные значения. Чтобы получить сложное суждение, противоречащее исходному, последнее нужно подвергнуть отрицанию. Так, например, для р противоречащим будет ù р; для конъюнкции р Ù q противоречием будет ее отрицание — ù (р Ù q) и т.п.Обобщенная таблица логических отношений между суждениями представлена на рис. 43.
Сопоставление суждений в дискуссиях. Отчетливое представление об отношениях, в которых могут находиться суждения, позволяет логически грамотно анализировать высказывания участников дискуссий. Встречаются ситуации, когда логический анализ показывает совместимость различных по структуре суждений. Нередко это случается с частными суждениями. Пропонент утверждает, что «Некоторые S есть Р»; оппонент настаивает, что «Некоторые S не есть Р». На поверку же выходит, что эти суждения не исключают друг друга, а являются частично совместимыми и оба могут оказаться истинными. В спорах и дискуссиях могут смешиваться противоречащие и противоположные суждения. Например, обвинитель утверждает, что в рассматриваемом случае имело место убийство (р), которое совершено умышленно ( q ). Защитник не отрицает факта убийства (р), но считает, что оно было совершено без умысла (ù q ). Каждый из них считает, что эти утверждения — ( р Ù q ) и ( р Ù | q ) — исключают друг друга как альтернативные. В действительности же оказывается, что эти высказывания находятся в отношении противоположности. В этом легко убедиться с помощью таблицы (рис. 44). Анализ показывает, что эти высказывания несовместимы, поскольку ни в одной строке не являются одновременно истинными. Вместе с тем оба они могут быть ложными (3-я и 4-я строки), значит, они находятся в отношении противоположности. Отсюда следует, что если будет показана в целом несостоятельность утверждения обвинителя, то это еще не означает правоту защитника. Точно так же опровержение утверждений защитника логически не обязывает принимать точку зрения обвинителя Может оказаться, что оба утверждения ложны и задача сведется к поиску нового объяснения фактам. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 403; Нарушение авторского права страницы