![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Интегрирование функций комплексного переменного.
10.3.1. Вычислить 10.3.2. Вычислить с помощью интегральной формулы Коши
Ряды Тейлора и Лорана. 10.4.1. Разложить функцию 10.4.2. Разложить функцию 10.4.3. Разложить функцию Вычеты и их приложения. 10.5.1. Определить тип особых точек функции 10.5.2. Вычислить с помощью вычетов Операционное исчисление Нахождение изображений и восстановление оригиналов. 11.1.1. Найти изображения функций: а) 11.1.2. Восстановить оригиналы по изображениям: а) Приложения операционного исчисления. 11.2.1. Решить операционным методом дифференциальное уравнение: а) б)
Теория вероятностей Случайные события. 12.1.1. В коробке находятся m+2 синих, n+3 красных и 2n+1 зеленых карандашей. Одновременно вынимают m+3n+2 карандашей. Найти вероятность того, что среди них будет m+1 синих и n+1 красных. 12.1.2. В первой урне находятся m+2 шаров белого и n шаров черного цвета, во второй — m+n белого и m синего, в третьей — n+3 белого и m+1 красного цвета. Из первой и второй урны наудачу извлекают по одному шару и кладут в третью. После этого из третьей вынимают один шар. Найти вероятность того, что он окажется белым. 12.1.3. Вероятность попадания стрелка в мишень при одном выстреле равна 12.1.4. Каждый избиратель независимо от остальных избирателей, отдаёт свой голос за кандидата А с вероятностью 0, 1(m+n) и за кандидата В – с вероятностью 1-0, 1(m+n). Оценить вероятность того, что в результате голосования на избирательном участке (5000 избирателей) один из кандидатов опередит другого: Случайные величины. 12.2.1. Случайная величина Х равна числу появлений «герба» в серии из n+3 бросаний монеты. Найти закон распределения и функцию распределения F(x) этой случайной величины; вычислить ее математическое ожидание M X и дисперсию D X; построить график F(x). 12.2.2. Закон распределения дискретной случайной величины X имеет вид:
Найти вероятности p4, p5, и дисперсию D X , если математическое ожидание M X =-0, 5+0, 5m+0, 1n. 12.2.3. Плотность распределения непрерывной случайной величины X имеет вид: Найти: а) параметр а; б) функцию распределения в) вероятность попадания случайной величины X в интервал
г) математическое ожидание M X и дисперсию D X . Построить график функций 12.2.4. Случайные величины Элементы математической статистики
Имеются следующие выборочные данные (выборка 10%-ная, механическая) о выпуске продукции и сумме прибыли, млн. руб.:
По исходным данным: Задание 13.1. 13.1.1. Постройте статистический ряд распределения предприятий по сумме прибыли, образовав пять групп с равными интервалами. Постройте графики ряда распределения. 13.1.2. Рассчитайте числовые характеристики ряда распределения предприятий по сумме прибыли: среднюю арифметическую Задание 13.2. 13.2.1. Определите границы, в которых с вероятностью 0, 997 заключена сумма прибыли одного предприятия в генеральной совокупности. 13.2.2. Используя c2-критерий Пирсона, при уровне значимости Задание 13.3. 13.3.1. Определите коэффициенты выборочного уравнения регрессии 13.3.2. Установите наличие и характер корреляционной связи между стоимостью произведённой продукции (X) и суммой прибыли на одно предприятие (Y). Постройте диаграмму рассеяния и линию регрессии. 13.3.3. Рассчитайте линейный коэффициент корреляции. Используя t-критерий Стьюдента, проверьте значимость коэффициента корреляции. Сделайте вывод о тесноте связи между факторами X и Y, используя шкалу Чеддока. При расчетах целесообразно использовать стандартные математические пакеты для персональных компьютеров.
Линейное программирование |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 327; Нарушение авторского права страницы