Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Белки и их биологическая роль



Структурная организация белковой молекулы. Первичная, вторичная, третичная и четвертичная структуры белков, биологическая роль. Типы химических связей, стабилизирующих структуру белков. Протеомика, классификация белков по биологическим функциям. Связь структуры белков с функцией. (ОК-5, ПК-9, ПК-15)

Белки и их биологическая роль

Белок (протеины) – protos – предшествующий всему, первичный, наиглавнейший, определяющий всё остальное.

Белки – это высокомолекулярные азотсодержащие органические вещества, состоящие из аминокислот, соединённых в цепи с помощью пептидных связей и имеющих сложную структурную организацию.

Основные отличительные признаки белков:

1. содержат азота больше, чем другие вещества (16%). Так, 1г азота содержится в 6, 25г белка;

2. состоят из альфа-аминокислот L-ряда;

3. наличие пептидных связей;

4. большая молекулярная масса (от 4-5 тыс. дальтон до нескольких млн.);

5. имеют сложную структурную организацию;

6. белки составляют 25% сырой ткани и 45-50% сухой ткани.

Биологическая роль белков :

1. каталитическая (выполняют ферменты);

2. структурная, т.е. белки являются основным компонентом клеточных структур;

3. регуляторная (выполняют белки-гормоны);

4. рецепторная, т.е. рецепторы клеточных мембран имеют белковую природу;

5. транспортная – белки участвуют в транспорте липидов, токсических веществ, кислорода и т.д.;

6. опорная – выполняет белок коллаген;

7. энергетическая. Заключается в том, что при окислении 1г белка выделяется 17, 6 кДж (4, 1ккал) энергии;

8. сократительная – её выполняют белки актин и миозин;

9. генно-регуляторная – её выполняют белки гистоны, участвуя в регуляции репликации;

10. имуннологическая – её выполняют белки антитела;

11. гемостатическая – участвуют в свёртывании крови, препятствуют кровотечению;

12. антитоксическая, т.е. белки связывают многие токсические вещества (особенно соли тяжёлых металлов) и препятствуют развитию интоксикации в организме.

Физико-химические свойства белков :

Структура белка определяет его свойства. Существует несколько групп свойств.

I. Электрохимические свойства белков:

1. белки - амфотерные полиэлектролиты (амфолиты). Это достигается за счет наличия концевых СОО- и NH3+ групп, а также ионогенных групп боковых радикалов (ГЛУ, АСП, ЛИЗ, АРГ, ГИС)

2. буферность белков (поддержка рН среды). При физиологических значениях рН буферные свойства ограничены и обусловлены наличием кислотных и основных групп. Наибольшим буферным действием обладает гистидин, которого много в гемоглобине, за счет чего последний является мощным буфером крови;

3. наличие заряда в белковой молекуле. Обусловлено соотношением кислых и основных АК, а также ионизацией бокового радикала. Степень ионизации зависит от рН среды. Так, если среда кислая, то ионизация СООН групп заторможена и белок приобретает «+» заряд. В щелочной среде заторможена ионизация NH 2 групп и белок заряжается «--».

Изоэлектрическое состояние белка наступает, когда заряд белковой молекулы равен 0, а рН среды, при котором белок находится в изоэлектрическом состоянии, называется изоэлектрической точкой (рI). Она определяется соотношением кислых и основных радикалов. У большей части белков цитоплазмы рI меньше 7, т.е. эти белки кислые; у ядерных белков больше 7, т.е. они основные.

Наличие заряда используется для разделения белков с помощью электрофореза – движения белков в электрическом поле. Наличие заряда обусловливает устойчивость в растворе. В изоэлектрическом состоянии белки наименее устойчивы и выпадают в осадок.

 

II. Коллоидные свойства.

Растворы белков чаще всего достаточно устойчивы. Хорошая растворимость приближает растворы белков к истинным растворам, но высокая молекулярная масса придает им свойства коллоидных систем:

1. способность рассеивать свет (опалисценция). Наблюдается помутнение при боковом освещении - эффект Тиндаля [рис. рассеивающегося луча]. Используется в световой микроскопии (нефелометрии);

2. малая скорость диффузии;

3. высокая вязкость растворов белков;

4. неспособность белков проникать через полупроницаемые мембраны (явление осмоса). На этом основан диализ – очищение белков;

5. способность белковых растворов образовывать гель. Наиболее выражено у фибриллярных белков.

 

III. Гидрофильные свойства.

Белки хорошо связываются водой, обусловлено наличием полярных гидрофильных групп. Вода может проникать в белок и связываться с его гидрофильными группами, вызывая его набухание. Также возможно образование гидратной оболочки. 100г белка связывают 30-35г воды.

 

IV. Растворимость белков.

Чем больше полярных групп содержит белок, тем больше он растворим. Глобулярные белки растворяются лучше. Растворимость белков зависит от 2-х факторов:

- наличия заряда;

- образования гидратной оболочки.

Чтобы осадить белок, необходимо ликвидировать эти 2 фактора. Осаждение белков с помощью нейтральных солей называется высаливание – обратимое осаждение. После удаления высаливающегося фактора белок сохраняет все свои свойства.

 

2. Высаливание и денатурация белков. Механизмы действия денатурирующих факторов. Роль в биологии и медицине. (ОК-5, ПК-9, ПК-15, ПК-18, ПК-33)

 

Методы разделения (фракционирования) белков

1. Высаливание – разделение на основе различной растворимости альбуминов и глобулинов. Осаждение белков обычно производят сульфатом аммония (NH4)2SO4. В насыщенном растворе этого реактива осаждаются альбумины, а в полунасыщенном – глобулины.

V. Денатурация.

Под действием внешних факторов нарушается высшие уровни (вторичный, третичный, четвертичный) структурной организации белков с сохранением первичной структуры. При этом белок теряет свои нативные свойства. При денатурации разрываются связи, удерживающие высшие структурные организации. Денатурацию вызывают физические и химические факторы: давление, температура, механическое воздействие, ультразвук, ионизирующее излучение, кислоты, щёлочи, органические растворители, соли тяжёлых металлов. При кратковременном воздействии денатурирующих факторов возможна ренатурация.

 

Методы разделения смесей белков. Значение хроматографического и электрофоретического исследования белков плазмы крови. Белковые фракции плазмы крови, причины их изменения. (ОК-5, ПК-9, ПК-15, ПК-18, ПК-33)

 

Методы разделения (фракционирования) белков

1. Высаливание – разделение на основе различной растворимости альбуминов и глобулинов. Осаждение белков обычно производят сульфатом аммония (NH4)2SO4. В насыщенном растворе этого реактива осаждаются альбумины, а в полунасыщенном – глобулины.

2. Электрофорез – разделение белков при движении в электрическом поле за счет разности их заряда.

Основные белки сыворотки крови делятся на несколько фракций. Быстрее всех движутся к аноду альбумины – это гомогенная фракция. Глобулины делятся на 4 фракции: a1, a2, b, g [рис. альбуминов и 4-х глобулинов и как они движутся к аноду].

В крови определяется общий белок. Нормальное общее содержание белка, но изменено соотношение его фракций – диспротенемия. При инфекционных заболеваниях увеличивается содержание g-глобулиновой фракции. При заболеваниях почек снижается содержание альбуминовой фракции, но увеличивается содержание a2 и b глобулинов. Также наблюдается парапротеинемия – появление патологических белков, например при некоторых онкологических заболеваниях.

 

Номенклатура ферментов

1) Существует тривиальная номенклатура – названия случайные, без системы и основания, например трипсин, пепсин, химотрипсин.

2) Рабочая номенклатура – название фермента составляется из названия субстрата или продукта реакции, типа катализируемой реакции и окончание –аза, например лактатдегирогеназа.

3) Систематическая, научная - L-лактат-НАД-оксидредуктаза.

4) Все ферменты имеют цифровой шифр, например ЛДГ - 1.1.1.27.

Первая цифра говорит о типе катализируемой реакции, указывая на номер класса.

Вторая уточняет действие фермента – номер подкласса.

Третья указывает природу разрываемой связи в молекуле субстрата - подподкласс.

Четвёртая – порядковый номер фермента.

В основу современной теории положена теория Михаэлеса и Ментена. Ведущую роль в механизме ферментативного катализа играет образование фермент-субстратного комплекса. По этой теории весь процесс катализа можно разделить на 3 этапа:

[рис. E+S«ES®ES*®ES**®EP®E+P]

1 этап: образование фермент-субстратного комплекса (на рис. до ES включительно). Происходит диффузия субстрата к ферменту и субстрат, в соответствии с принципом комплиментарности, связывается с активным центром фермента – образуется фермент-субстратный комплекс. Реагенты связаны слабыми связями, т.е. водородными, ионными, гидрофобными, в некоторых случаях и ковалентными. Эта стадия непродолжительна, зависит от концентрации субстрата и от скорости диффузии его к активному центру. Энергия активации исходных веществ при этом изменяется незначительно. На этой стадии проявляется эффект концентрирования субстрата на поверхности фермента – эффект ориентации.

2 этап: (на рис. от ES до EP включительно) происходит последовательное преобразование первичного фермент-субстратного комплекса в 1 или несколько активированных. Эта стадия наиболее медленна, ее длительность зависит от величины энергии активации данной реакции. В эту стадию происходит разрыв старых связей и образование новых, при этом энергия активации значительно снижается. По продолжительности эта стадия является лимитирующей для всего процесса.

На этой стадии проявляется эффект вынужденного соответствия – эффект «дыбы»: субстрат под действием фермента претерпевает изменения, делающие его более доступным для воздействия каталитического участка активного центра фермента. Одновременно с этим происходит изменение конформации фермента в большей степени в активном центре.

3 этап: отделение продуктов от активного центра фермента и диффузия их в окружающую среду. Эта стадия непродолжительна, ее скорость определяется скоростью диффузии продуктов в окружающую среду.

[график: по оси х – ход реакции, по у – энергия активации; рисуем горизонтальную прямую от середины оси у, затем горочку и окускаемся ниже прямой. пририсовываем меньшую горочку пунктиром]

 

 

Ингибирование и активация ферментов, механизмы. Примеры ингибиторов и активаторов. Ограниченный протеолиз. (ОК-5, ПК-8, ПК-9, ПК-15, ПК-18, ПК-33)

Активность каких ферментов и белков плазмы крови следует определить для диагностики инфаркта миокарда? Значение изменения этих показателей в динамике. (ОК-5, ПК-8, ПК-9, ПК-15, ПК-17, ПК-18, ПК-31, ПК-33)

Витамин В1

Тиамин, антиневритный витамин.

Тиамин устойчив в кислой среде (до 140º С), а в щелочной среде быстро разрушается.

Роль витамина В1 в обмене веществ

1. из него образуется ТПФ (тиаминпирофосфат) – кофермента декарбоксилаз кетокислот (пируват-ДК-комплекс, альфа-КГ-ДК) и транскетолазы;

2. участвует в передаче нервного импульса;

3. является коферментом транскетолазы.

Гиповитаминоз В1: накопление ПВК и альфа-КГ в крови из-за нарушения их превращений, поражение нервной ткани из-за недостатка глюкозы.

Авитаминоз В1 – болезнь бери-бери: полиневриты, отеки, сердечно-сосудистая недостаточность (иногда до некрозов), нарушения секреции и моторики ЖКТ (атония кишечника). Чаще развивается при хроническом алкоголизме, когда витамин В1 не всасывается.

Суточная потребность витамина В1 2-3 мг. Потребность возрастает при углеводной пище (0, 5 мг витамина на каждые 1000 ккал).

Источники тиамина: дрожжи, хлеб грубого помола, каши, крупы (овсяная, гречневая, фасоль).

 

Витамин В2

Рибофлавин

Устойчив в кислой среде, но разрушается в нейтральной и щелочной. Легко окисляется по двойной связи, что позволяет ему участвовать в о/в реакциях в виде коферментов (ФМН, ФАД):

- окисляет восстановленную форму НАД·Н (компонент НАД·Н-дегидрогеназы в дыхательной цепи),

- окисляет жирные к-ты, янтарную к-ту, аминокислоты.

Авитаминоз В2: поражение эпителия слизистых, кожи, глаз; сухость слизистых губ, полости рта, трещины губ; дерматиты, сухость конъюнктивы, переходящая в конъюнктивиты, кератиты, васкуляризация глазных яблок.

Суточная потребность 2-4 мг.

Источники: дрожжи, печень; хлеб грубого помола, соя, яйца, молоко.

 

Витамин РР

Антипеллагрический витамин.

Витамеры: никотиновая к-та, никотинамид, ниацин.

Устойчив при кипячении.

Роль витамина РР в обмене веществ

Используется для синтеза НАД и НАДФ – коферментов дегидрогеназ.

Гиповитаминоз РР: усталость, слабость. Более выраженный – пеллагра: диарея, дерматиты, деменция (слабоумие).

Суточная потребность витамина РР 20-25 мг.

Источники: дрожжи, печень, грибы, соя, бобы, мясо, мука пшеничная грубого помола. Может синтезироваться в организме из аминокислоты триптофана при участии витамина В6.

Поэтому гиповитаминоз РР бывает при белковом голодании и при гиповитаминозе В6.

 

Витамин В6

Антидерматитный витамин.

Пиридоксин → пиридоксаль → пиридоксамин [нарисовать формулы]

(все три эти соединения обладают витаминным действием)

Роль витамина В6 в обмене веществ

1. он необходим для образования ПФ (пиридоксальфосфата) – кофермента амино-ТФ, декарбоксилаз АК, дезаминаз АК;

2. необходим для превращения триптофана в витамин РР;

3. нужен для превращения дельта-аминолевулиновой кислоты в гем.

{Т.е., вит.В6 нужен для обмена аминокислот}

Гиповитаминоз В6: анемия из-за нарушения обмена АК, плюс дерматиты, стоматиты, глосситы, конъюнктивиты.

Суточная потребность в витамине В6 2-3 мг.

Источники: печень, дрожжи, хлеб грубого помола, горох. Также он синтезируется микрофлорой кишечника.

Гиповитаминоз возможен при длительном употреблении антибиотиков, особенно, противотуберкулезных препаратов.

Витамин В3

Пантотеновая кислота. [рис. формулы НОСН2-С((СН3)2)-СН(ОН)-СО-NH-СН2-СН2-СООН]

Состоит из масляной кислоты с b-аланином.

Роль в обмене веществ

Участвует в образовании КоА, который в свою очередь участвует:

1. синтезе и распаде жирных кислот;

2. транспорте ацильных остатков (пр., АцКоА)

3. в реакциях окислительного декарбоксилирова­ния пирувата и a-кетоглутаровой кислоты.

{Т.е. витамин В3 необходим для обмена Б, Ж, У}

Авитаминоз – представлен разными формами; характерны дерматиты, поражения слизистой оболочки внутренних органов, поражение ЖВС (надпочечники, тимус), поражение нервной ткани. Авитаминозы практически не встречаются.

Суточная потребность 10 мг.

Этот витамин широко распространен, содержится в печени, яйцах. овсяных хлопьях, дрожжах. Также синтезируется микрофлорой кишечника

 

Витамин Н (биотин)

Антисеборейный витамин. Структура: тиофен, соединеный с мочевиной+ боковая цепь (валериановая кислота).

Устойчив при нагревании.

Роль биотина в обмене веществ

Биотин – кофермент карбоксилирования (превращение ацетил-КоА в малонил-КоА в синтезе ВЖК) и кофермент транскарбоксилирования в синтезе пуриновых оснований.

Авитаминоз Н – себорея: покраснение и шелушение сальной кожи на волосистой части головы.

Суточная потребность витамина Н 0, 010 мг.

Источники: печень, яйца, молоко.

Авитаминоз бывает при употреблении сырых яиц, содержащих авидин (антивитамин Н).

 

Витамин С

Аскорбиновая кислота, антискорбутный витамин (скорбут = цинга).

Является лактоном. Легко окисляется:

О=С─ ┐ О=С─ ┐

| │ | │

НО-С │ -2Н О=С │

║ О ◄ ═ ═ ═ ► | О

НО-С │ +2Н О=С │

| │ | │

НС─ ┘ НС─ ┘

| |

НО-СН НО-СН

| |

Н2С-ОН Н2С-ОН

аскорбат дегидроаскорбат

Енольные гидроксилы неустойчивы, особенно в присутствии кислорода. В кислой среде витамин С сохраняется лучше.

Жирорастворимые витамины

Витамин А

Витамеры: А1 – ретинол и А2 – ретиналь.

Клиническое название: антиксерофтальмический витамин.

По химической природе: циклический непредельный одноатомный спирт на основе кольца b-ионона.

Может разрушаться кислородом, т.е. является антиоксидантом.

Роль витамина А в метаболизме:

1. Участвует в росте и дифференцировке клеток эмбриона, развивающегося организма. Участвует в делении и дифференцировке быстро пролиферирующих тканей (хрящевые, костные, эпителиальные ткани), т.к. витамин А может инициировать репликацию и участвует в образовании хондроитинсульфата.

2. Участвует в фотохимическом процессе зрения. В состав зрительного пигмента родопсина входит 11-цис-ретиналь, который при освещении переходит в 11-транс-ретиналь, активирующий фосфодиэстеразу, которая расщепляет цГМФ, в результате чего ионные каналы мембраны закрываются, возникает гиперполяризация мембраны и генерируется нервный импульс. При этом родопсин разлагается на белок опсин и 11-транс-ретиналь. В темноте наблюдается регенерация родопсина: транс-ретиналь® (алкоголь-ДГ, НАД·Н2 → НАД) транс-ретинол® (изомераза) цис-ретинол ®(алкоголь-ДГ, НАД·Н2 → НАД) цис-ретиналь® (+опсин) родопсин

Гиповитаминоз А проявляется нарушением темновой адаптации. Если наблюдается в растущем организме, то имеет место задержка роста. Гиповитаминоз А может перерасти в авитаминоз А, проявляющийся гемеролопией (" ночной слепотой" ). При недостатке витамина А нарушается эпителизация, наблюдается избыточное ороговение эпителия (сухость кожи, сухость роговицы глаз – ксерофтальмия). Ксерофтальмия может привести к развитию микрофлоры, кератомаляции (размягчению роговицы), затем к её помутнению и амблеопии (слепоте).

Причины гипо- и авитаминозов А:

- недостаток в пище

- нарушение всасывания в кишечнике

- заболевания печени, при которых провитамин (кератин) не превращается в витамин

- повышенная потребность в витамине А – у растущего организма, беременных, ночных водителей)

Суточная потребность витамина А 1, 0 - 2, 5 мг, а провитамина А (каротина) 2, 0 – 4, 0 мг.

Каротин (провитамин А) – димер витамина А. Содержится в растительных продуктах. (Различают альфа-, бета- и гамма-каротин.)

Источники витамина А:

- животные жиры (рыбий жир, печень, яичный желток, сливочное масло);

- каротин растительного происхождения (морковь, свекла, томаты, зеленый горошек).

 

Витамин D

Антирахитический витамин. Существуют два витамера:

D2 – эргокальциферол и D3 – холекальциферол.

Витамин D2 содержится в грибах. Витамин D3 синтезируется в организме под действием УФО (ультрафиолетового облучения):

7-дегидрохолестерол → холекальциферол (D3)

Роль витамина D в обмене веществ:

Витамин D3 (холекальциферол) подвергается в организме превращению. Он поступает в печень, где под действием 25-гидроксилазы превращается в 25-гидроксихолекальциферол, затем в почках под действием ПТГ и 1-гидроксилазы – в 1, 25-дигидроксихолекальциферол (гормон кальцитриол)

кальцитриол

Функции кальцитриола

1. регулирует всасывание кальция и фосфора в кишечнике путем активации синтеза в энтероцитах кальций-связывающего белка (кальбиндина D);

2. в костях способствует минерализации ткани, поддержанию нормальной концентрации кальция и фосфора в межклеточном пространстве.

(повышает активность щелочной фосфатазы, повышает концентрацию кальций-связывающего белка и остеокальцина)

Гиповитаминоз D приводит к снижению уровня кальция в крови, снижению кальция и фосфора в межклеточном пространстве, нарушению минерализации костной ткани.

Авитаминоз Dрахит. Различают рахит I типа (при недостатке витамина D) и рахит II типа (при недостатке рецепторов). Проявляется рахит деформациями скелета (" рахитические четки", Х-образные или О-образные голени, килевидная грудная клетка).

Недостаток витамина D у взрослых сопровождается остеомаляцией, а в крови увеличивается активность щелочной фосфатазы.

Причины гиповитаминозов D:

- недостаток витамина D в пище

- недостаток УФ (солнечного) облучения

- недостаток парат-гормона

Суточная потребность вит. D 0, 012-0, 025 мг.

Источники витамина D: яичный желток, рыбий жир, сливочное масло (лучше летнее), печень, молоко.

 

Витамин Е

Устар.: антистерильный витамин, антиоксидантный энзим.

В химическом плане это альфа-, бета-, гамма- и дельта-токоферолы, но преобладающим является альфа-токоферол.

Витамин Е устойчив к нагреванию.

Витамин К

Антигеморрагический витамин.

Витамеры: К1 – филлохинон и К2 – менахинон.

Дыхательная цепь (ДЦ)

(или Цепь Переноса Электронов – ЦПЭ, или Электрон-Транспортная Цепь – ЭТЦ)

ДЦ – это конвейер по переносу электронов и протонов от восстановленного субстрата к кислороду.

Компоненты ДЦ:

1. Пиридинзависимые ДГ (НАД-, НАДФ-зависимые)

Рабочая часть – витамин РР (никотинамид)

НАД + 2Н + + 2е ↔ НАД·Н 2

2. ФАД-зависимые ДГ (кофермент в ДЦ – ФМН, а акцептор электронов непосредственно от субстрата – ФАД. Рабочая часть – изоалоксазин.

[При восстановлении к атомам азота при двойных связях, отмеченных стрелками, присоединяется по атому водорода, а двойная связь перемещается на общую грань колец В и С.]

3. Убихинон (Ko Q). Обладает о/в-свойствами благодаря кето-енольной таутомерии.

4. Цитохромы. Относятся к гемопротеинам, содержат атомы железа, переход степени (2↔ 3) окисления которого и обеспечивает транспорт электронов (протоны ими не транспортируются!!! ).

В ДЦ цитохромы расположены в следующей последовательности: b - c 1 - c - a - a 3 .

Совокупность цитохромов b и c 1 называют КоQH-дегидрогеназой, т.к. они отщепляют атом водорода от убихинона (KoQ).

Цитохромы а и а 3 цитохромоксидазой (т.к. способствуют переносу электронов на молекулярный кислород).

 

Функционирование ДЦ

Субстрат·Н 2 → НАД → ФМН → КоQ → 2b → 2c 1 → 2c → 2a → 2a 3 → O 2.

[До KoQ включительно переносятся 2 протона и 2 электрона, а по цепи цитохромов – только 2 электрона]

Существует и укороченная ДЦ, в которой субстрат окисляется ФАД-зависимой ДГ, отдающей затем 2 протона и 2 электрона непосредственно на убихинон.

Необходимо отметить, что АТФ выделяется на этапах: НАД→ ФМН (в укороченной ДЦ эта молекула АТФ не выделяется! ), b→ c 1 , a→ a 3 .

Вообще, молекула АТФ синтезируется если разница потенциалов между соседними компонентами цепи превышает 0, 2 В, т.е. может выделиться энергия не менее 50 кДж/моль.

 

Переваривание липидов

Поступая с пищей, липиды в ротовой полости подвергаются только механической обработке. Липолитические ферменты в ротовой полости не образуются. Переваривание липидов будет происходить в тех отделах ЖКТ, где будут создаваться условия для эмульгирования и гидролиза, где будет оптимальная реакция среды для ферментов.

Все эти условия у взрослого человека создаются в кишечнике. У детей первого года жизни слизистая оболочка желудка вырабатывает липазы. рН лежит в слабо кислой среде (рН=5, 5). Под влиянием желудочной липазы расщепляются эмульгированные жиры молока. У взрослого человека хотя и вырабатывается желудочная липаза, но она не активна, поскольку рН желудочного сока в норме лежит в резко кислой среде (рН=1, 5-2, 5).

Переваривание жиров пищи начинается в тонком отделе кишечника, где создаются все условия для гидролиза. В переваривании участвуют:

- желчные кислоты, которые образуются в печени;

- бикарбонаты и ферменты поджелудочной железы;

- ферменты собственно слизистой оболочки желудка.

При поступлении пищи из желудка в двенадцатиперстную кишку, слизистой последней начинают выделятся регуляторы:

- химоденин;

- секретин;

- холецистокинин;

- энтерокинин.

Все они обеспечивают желчеобразование в печени, сокращение желчного пузыря, выделение панкреатического сока и стимуляцию секреции желез тонкого кишечника.

Также под влиянием бикарбонатов поджелудочной железы будет происходить нейтрализация соляной кислоты. При разложении образующейся угольной кислоты выделяется СО2, который способствует лучшему перемешиванию пищевого комка.

Основную роль в переваривании пищи играют желчные кислоты, которые образуются в печени из холестерина. В основе всех желчных кислот лежит структура циклопентанпергидрофенантрена:

Родоначальником желчных кислот является холевая кислота, которая содержит ОН-группу в 3, 7 и 12 положениях. Производными холевой кислоты являются:

1. хенодезоксихолевая кислота, которая имеет 2 ОН-группы в 3 и 7 положениях;

2. дезоксихолевая кислота, имеющая окси-группы в 3 и 12 положениях;

3. литохолевая кислота, имеющая одну окси-группу в 3 положении.

Большая часть желчных кислот в печени конъюгирована глицином и таурином. Их еще называют парные желчные кислоты, например гликохолиевые, таурохолиевые кислоты. Соотношение конъюгатов меняется в зависимости от характера принимаемой пищи. В случае преобладания углеводов увеличивается содержание глициновых конъюгатов. Если преобладают белки в диете, то увеличивается содержание тауриновых конъюгатов.

Выделение желчных кислот способствует:

1. эмульгированию жира;

2. активации панкреатических липаз, фосфолипаз;

3. способствуют всасыванию труднорастворимых в воде веществ: ВЖК, ХС, моношлицеридов, жирорастворимых витаминов.

При эмульгировании жир дробится на мелкие капельки, что значительно увеличивает поверхность контакта липида с ферментами. Желчные кислоты обволакивают эти капельки, препятствуя тем самым их слиянию. Таким образом стабилизируется эмульсия жира, который будет подвергаться гидролизу под влиянием панкреатических липаз. Помогают гидролизу жира ионы Са2+, которые образуют комплекс со свободными ВЖК. [рис. гидролиза трипальмитина: трипальмитин +3 воды® (липаза) глицерин+ 3 С15Н31СООН] [рис. гидролиза фосфатидилхолина: фосфатидилхолин +4 воды®(фосфолипазы А1, А2, С, D) глицерин + С15Н31СООН + С17Н31СООН +Н3РО4 +НО-СН2- СН2-Nº ( СН3) 3] Фосфолипаза А1 действует на связь между глицерином и предельной ВЖК, А2 – между глицерином и непредельной ВЖК, С – между глицерином и фосфорной кислотой, D – между фосфорной кислотой и холином (HO-CH2-CH2-N+(CH3)3).

В результате гидролиза пищевого жира образуются спирты, фосфаты, ВЖК, азотистые основания, АК и другие соединения. Необходимо отметить, что в расщеплении жиров принимают участие и кишечные липазы, но их активность невысокая. К тому же они расщепляют только моноглицериды.

Установлено, что всасывание продуктов гидролиза жира имеет свои особенности. Легко всасываются простой диффузией в слизистую кишечника спирты, АК, фосфаты, короткоцепочечные ВЖК (10-14 атомов С), азотистые основания. Труднорастворимые в воде продукты гидролиза (ВЖК, моноглицериды, холестерин, жирорастворимые витамины) всасываются только в комплексе с желчными кислотами. Эти комплексы называются холеиновыми. В таком виде эти соединения проходят через биомембраны энтероцитов. В эпителии клеток ворсинок кишечника происходит распад холинового комплекса. При этом желчные кислоты сразу поступают в ток крови и через систему воротной вены попадают в печень, откуда они вновь поступают в составе желчи в желчный пузырь и могут вновь принимать участие в новом акте переваривания жира пищи.

Установлено, что общий фонд желчных кислот у взрослого человека составляет 2, 8-3, 5 г. При этом они совершают 5-6 оборотов в сутки за счёт печёночно-кишечной циркуляции. После того, как продукты гидролиза жира поступили в энтероциты, в стенке кишечника начинают синтезироваться жиры, специфичные для данного организма, которые по своему строению отличаются от пищевого жира.

 

31. Желчные кислоты, образование, строение, роль в организме. (ОК-3, ОК-5, ПК-5, ПК-8, ПК-9, ПК-15, ПК-16, ПК-17, ПК-18)

 

Основную роль в переваривании пищи играют желчные кислоты, которые образуются в печени из холестерина. В основе всех желчных кислот лежит структура циклопентанпергидрофенантрена:

Родоначальником желчных кислот является холевая кислота, которая содержит ОН-группу в 3, 7 и 12 положениях. Производными холевой кислоты являются:

1. хенодезоксихолевая кислота, которая имеет 2 ОН-группы в 3 и 7 положениях;

2. дезоксихолевая кислота, имеющая окси-группы в 3 и 12 положениях;

3. литохолевая кислота, имеющая одну окси-группу в 3 положении.

Большая часть желчных кислот в печени конъюгирована глицином и таурином. Их еще называют парные желчные кислоты, например гликохолиевые, таурохолиевые кислоты. Соотношение конъюгатов меняется в зависимости от характера принимаемой пищи. В случае преобладания углеводов увеличивается содержание глициновых конъюгатов. Если преобладают белки в диете, то увеличивается содержание тауриновых конъюгатов.

Выделение желчных кислот способствует:

1. эмульгированию жира;

2. активации панкреатических липаз, фосфолипаз;

3. способствуют всасыванию труднорастворимых в воде веществ: ВЖК, ХС, моношлицеридов, жирорастворимых витаминов.

 

32. Пути энергетического использования липидов (написать соответствующие реакции). Роль высших жирных кислот в энергетическом метаболизме. Энергетический баланс на примере стеариновой кислоты. (ОК-3, ОК-5, ПК-5, ПК-8, ПК-9, ПК-15, ПК-16, ПК-17, ПК-31)

 

Окисление ВЖК в тканях изучал Кнопп (1904г), который показал, что процесс окисления ВЖК до конечных продуктов циклический. Он назвал окисление ВЖК b-окислением.

Все ВЖК, имеющие чётное количество углеродных звеньев в цепи, обязательно окисляясь, укорачиваются в результате 1 бета цикла на 2 углеродных звена и проходят последнюю стадию превращения масляной кислоты, которая имеет свои особенности.

Ленинджером в 1949 году было установлено, что окисление ВЖК идет в митохондриях. Линнен в 1954 году установил, что b-окисление в тканях сопровождается укорочением ВЖК на 2 углеродных звена. В дальнейшем Ац-КоА окисляется до конечных продуктов в ЦТК. Линнен описал все стадии окисления ВЖК. В наше время b-окисление ВЖК в тканях называется циклом Кноппа-Линнена.

Установлено, что процесс b-окисления начинается в цитоплазме клеток с активации ВЖК. Биомембраны митохондрий для ВЖК не проницаемы и их транспорт внутрь митохондрий возможен только при участии азотистого основания – карнитина. Ацил-КоА в цитоплазме соединяется с карнитином при участии трансферазы. Образовавшийся комплекс ацил-карнитин легко проникает в митохондрии. В межмембранном пространстве уже при участии митохондриальных трансфераз этот комплекс распадается. Карнитин возвращается в цитозоль, а ВЖК подвергается окислению в матрице. Т.о. карнитин выполняет роль челнока для ВЖК между цитоплазмой и митохондриями.

[рис. R-CH2-CH2-COOH (это ВЖК)® (Ацил-КоА-синтетаза, АТФ®АДФ+Фн, +HS-KoA ) R-CH2-CH2-COSKoA (это ацил-КоА)®(дегидрогеназа, ФАД®ФАДН2, Н2О, 2АТФ) R-CH=CH-COSKoA (это еноилацил-КоА)®(еноилацилКоА-гидратаза, +Н2О) R-CH(ОН)-CH2-COSKoA (это b-гидроксиацил-КоА) ®(дегидрогеназа, НАД®НАДН2, Н2О, 3АТФ) R-C(O)-CH2-COSKoA (это b-кетоацил-КоА) ® (тиолаза, +HS-KoA) R-COSKoA (это ацил-КоА) + CH3-COSKoA (это ацетил-КоА, идет в ЦТК где выделяется 12 АТФ)]

Так идет окисление всех ВЖК. В результате одного b-цикла выделяется 5 молекул АТФ, АцКоА включается в ЦТК и дает еще 12 молекул АТФ. Т.о. в результате окисления 2-х углеродных атомов цепи ВЖК выделяется 17 молекул АТФ.

Окисление масляной кислоты.

Масляная кислота® бутирил-КоА® кротонил-КоА® b-гидроксибутирил-КоА® ацетоацетил-КоА. Особенность последней стадии окисления ВЖК в том, что в тиолазной реакции образуется 2 молекулы Ац-КоА, одна из которых не проходила начальный этап b-окисления с выделением 5 молекул АТФ.

АТФ(ВЖК)=n/2*17-6, где:

n – количество углеродных звеньев ВЖК;

17 - количество молекул АТФ, выделяющееся в результате 1 бета цикла окисления (12 – ЦТК, 5 – само b-окисление);

6 (1+5): 1 - та молекула АТФ, которая поглощается при активировании ВЖК;

5 – количество АТФ, которые не выделяются на последней стадиях окисления при превращении масляной кислоты.

 

Окисление ВЖК, имеющих нечётное количество углеродных звеньев.

Такие ВЖК поступают в организм человека с пищей морских организмов, растений, мяса жвачных животных и растений. Окисление происходит также, как и ВЖК, имеющих чётное число углеродных звеньев, но только до последней стадии, когда образуется пропионил-КоА.

CH3-CH2-COSKoA (это пропионил-КоА)® (карбоксилаза, биотин), +СО2, +Н2О, АТФ®АДФ+Фн) СООН-СН(СН3)-СOSKoA (это метитмалонил-КоА) ®(мутаза) СООН-СН2-СН2-СOSKoA (это сукцинил-КоА)

Образующийся сукцинил-КоА является одним из метаболитов ЦТК, куда он вовлекается для своего дальнейшего окисления.

ВЖК, окисляясь в клетке, дают большое количество энергии в виде макроэргических связей в молекулах АТФ, которая (энергия) используется мышцами (сердечной, скелетными), нервной тканью, при длительных физических нагрузках, в стрессовых ситуациях.

 

 

33. Основные этапы и ключевые ферменты биосинтеза высших жирных кислот. Регуляция процесса. Челночный механизм переноса ацетил-КоА. Образование и роль малонил-КоА. Принцип работы синтазы ВЖК. Реакции десатурации.. (ОК-3, ОК-5, ПК-5, ПК-8, ПК-9, ПК-15, ПК-16, ПК-17, ПК-31)

 

34. Холестерин, строение, роль, синтез до мевалоната (написать реакции). Регуляция процесса. Ингибиторы синтеза холестерина. Биохимические функции атерогенных форм липопротеинов и их роль в патогенезе атеросклероза. КоQ, возможность синтеза в организме. (ОК-1, ОК-3, ОК-5, ПК-«, ПК-3, ПК-5, ПК-8, ПК-9, ПК-15, ПК-16, ПК-17, ПК-31)


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 34; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.172 с.)
Главная | Случайная страница | Обратная связь