Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Поляризация диэлектриков. Вектор поляризации. Поверхностная плотность поляризационных зарядов.



Все известные в природе вещества, в соответствии с их способностью проводить электрический ток, делятся на три основных класса: диэлектрики, полупроводники и проводники. Если удельное сопротивление у проводников равно , то у диэлектриков , а полупроводники занимают промежуточную область

В идеальном диэлектрике свободных зарядов, то есть способных перемещаться на значительные расстояния (превосходящие расстояния между атомами), нет. Но это не значит, что диэлектрик, помещенный в электростатическое поле, не реагирует на него, что в нем ничего не происходит.

Любое вещество состоит из атомов, образованных положительными ядрами и отрицательными электронами. Поэтому в диэлектриках происходит поляризация.

Смещение электрических зарядов вещества под действием электрического поля называется поляризацией. Способность к поляризации является основным свойством диэлектриков

Видов поляризации много. Поляризуемость диэлектрика включает составляющие – электронную, ионную и ориентационную (дипольную).

Рис. 4.1 иллюстрирует механизм этих видов поляризуемости.

Электронная поляризуемость обусловлена смещением электронной оболочки атома относительно ядра. Ионная поляризуемость вызвана смещением заряженных ионов по отношению к другим ионам. Ориентационная (дипольная) поляризуемость возникает, когда вещество состоит из молекул, обладающих постоянными электрическими дипольными моментами, которые могут более или менее свободно изменять свою ориентацию во внешнем электрическом поле.

 

Есть и другие виды поляризации. Главное в поляризации – смещение зарядов в электростатическом поле. В результате, каждая молекула или атом образует электрический момент p (рис. 4.2):

Ясно, что электрический момент p пропорционален напряженности Е – напряженности электростатического поля в месте нахождения молекулы, то есть внутри вещества.

К чему приводит поляризация? Рассмотрим рис. 4.3.

Внутри диэлектрика электрические заряды диполей компенсируют друг друга. Но на внешних поверхностях диэлектрика, прилегающих к электродам, появляются заряды противоположного знака (поверхностно связанные заряды).

Обозначим – электростатическое поле связанных зарядов. Оно направлено всегда против внешнего поля . Следовательно, результирующее электростатическое поле внутри диэлектрика (4.1.2)

Итак, электростатическое поле внутри диэлектрика всегда меньше внешнего поля. Во сколько раз?

Рассмотрим некоторые количественные соотношения.

Поместим диэлектрик в виде параллелепипеда в электростатическое поле (рис. 4.4).

Электрический момент тела, можно найти по формуле: (4.1.3)

где – поверхностная плотность связанных зарядов.

Введем новое понятие – вектор поляризации – электрический момент единичного объема. (4.1.4)

где n – концентрация молекул в единице объема, – электрический момент одной молекулы.

С учетом этого обстоятельства, (4.1.5)

(т.к. – объем параллелепипеда).

Приравняем (4.1.3.) и (4.1.5) и учтем, что – проекция на направление – вектора нормали, тогда (4.1.6)

Поверхностная плотность поляризационных зарядов равна нормальной составляющей вектора поляризации в данной точке поверхности.

Отсюда следует, что индуцированное в диэлектрике электростатическое поле E' будет влиять только на нормальную составляющую вектора напряженности электростатического поля .

Вектор поляризации можно представить так: (4.1.7)

где α – поляризуемость молекул, – диэлектрическая восприимчивость – макроскопическая безразмерная величина, характеризующая поляризацию единицы объема.

Следовательно, и у результирующего поля изменяется, по сравнению с , только нормальная составляющая. Тангенциальная составляющая поля остается без изменения.

В векторной форме результирующее поле можно представить так: (4.1.8)

Результирующая электростатического поля в диэлектрике равно внешнему полю, деленному на диэлектрическую проницаемость среды ε: (4.19)

Величина характеризует электрические свойства диэлектрика. Физический смысл диэлектрической проницаемости среды ε – величина, показывающая во сколько раз электростатическое поле внутри диэлектрика меньше, чем в вакууме: (4.1.10)

С учетом этого обстоятельства, при наличии диэлектрической среды мы должны поправить все полученные нами в прошлых разделах формулы: например, теорема Гаусса:

или закон Кулона:

График зависимости напряженности поля шара от радиуса, с учетом диэлектрической проницаемости двух сред , показан на рисунке 4.5.

 

Рис. 4.5

Как видно из рисунка, напряженность поля изменяется скачком

при переходе из одной среды в другую

17. Вектор электрического смещения О. Теорема Гаусса для диэлектриков.

Напряженность электростатического поля зависит от свойств среды: в однородной изотропной среде напряженность поля Е обратно пропорциональна e. Вектор напряженности Е, переходя через границу диэлектриков, претерпевает скачкообразное изменение, создавая тем самым неудобства при расчетах электростатических полей. Поэтому оказалось необходимым помимо вектора напряженности характеризовать поле еще вектором электрического смещения, который для электрически изотропной среды, по определению, равен (89.1)

вектор электрического смещения можно выразить как (89.2)

Единица электрического смещения — кулон на метр в квадрате (Кл/м2).

Рассмотрим, с чем можно связать вектор электрического смещения. Связанные заряды появляются в диэлектрике при наличии внешнего электростатического поля, создаваемого системой свободных электрических зарядов, т. е. в диэлектрике на электростатическое поле свободных зарядов накладывается дополнительное поле связанных зарядов. Результирующее поле в диэлектрике описывается вектором напряженности Е, и потому он зависит от свойств диэлектрика. Вектором D описывается электростатическое поле, создаваемое свободными зарядами. Связанные заряды, возникающие в диэлектрике, могут вызвать, однако, перераспределение свободных зарядов, создающих поле. Поэтому вектор D характеризует электростатическое поле, создаваемое свободными зарядами (т. е. в вакууме), но при таком их распределении в пространстве, какое имеется при наличии диэлектрика.

Аналогично, как и поле Е, поле D изображается с помощью линий электрического смещения, направление и густота которых определяются точно так же, как и для линий напряженности.

Линии вектора Е могут начинаться и заканчиваться на любых зарядах — свободных и связанных, в то время как линии вектора D — только на свободных зарядах. Через области поля, где находятся связанные заряды, линии вектора D проходят не прерываясь.

Для произвольной замкнутой поверхности S поток вектора D сквозь эту поверхность

где Dn — проекция вектора D на нормаль n к площадке dS.

Теорема Гаусса для электростатического поля в диэлектрике: (89.3)

т. е. поток вектора смещения электростатического поля в диэлектрике сквозь произвольную замкнутую поверхность равен алгебраической сумме заключенных внутри этой поверхности свободных электрических зарядов. В такой форме теорема Гаусса справедлива для электростатического поля как для однородной и изотропной, так и для неоднородной и анизотропной сред.

Для вакуума , тогда поток вектора напряженности Е сквозь произвольную замкнутую поверхность равен

Так как источниками поля Е в среде являются как свободные, так и связанные заряды, то теорему Гаусса (81.2) для поля Е в самом общем виде можно записать как

где — соответственно алгебраические суммы свободных и связанных зарядов, охватываемых замкнутой поверхностью S. Однако эта формула неприемлема для описания поля Е в диэлектрике, так как она выражает свойства неизвестного поля Е через связанные заряды, которые, в свою очередь, определяются им же. Это еще раз доказывает целесообразность введения вектора электрического смещения.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 672; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.017 с.)
Главная | Случайная страница | Обратная связь