Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Магнитное поле, создаваемое витком с током (магн. диполем) на его оси. Магнитный момент.
29. Поток вектора В через замкн. поверхность (теорема Гаусса для В). Дивергенция вектора В. Потоком вектора магнитной индукции (магнитным потоком) через площадку dS называется скалярная физическая величина, равная (120.1) где Bn=В cos a —проекция вектора В на направление нормали к площадке dS (a — угол между векторами n и В), dS=dSn — вектор, модуль которого равен dS, а направление его совпадает с направлением нормали n к площадке. Поток вектора В может быть как положительным, так и отрицательным в зависимости от знака cos a (определяется выбором положительного направления нормали n). Поток вектора В связывают с контуром, по которому течет ток. В таком случае положительное направление нормали к контуру нами уже определено (см. § 109): оно связывается с током правилом правого винта. Таким образом, магнитный поток, создаваемый контуром через поверхность, ограниченную им самим, всегда положителен. Поток вектора магнитной индукции ФB через произвольную поверхность S равен (120.2) Для однородного поля и плоской поверхности, расположенной перпендикулярно вектору В, Bn=B=const и Из этой формулы определяется единица магнитного потока вебер (Вб): 1 Вб — магнитный поток, проходящий сквозь плоскую поверхность площадью 1 м2, расположенную перпендикулярно однородному магнитному полю, индукция которого равна 1 Тл (1 Вб=1 Тл× м2). Теорема Гаусса для поля В: поток вектора магнитной индукции сквозь любую замкнутую поверхность равен нулю: (120.3) Эта теорема отражает факт отсутствия магнитных зарядов, вследствие чего линии магнитной индукции не имеют ни начала, ни конца и являются замкнутыми. Итак, для потоков векторов В и Е сквозь замкнутую поверхность в вихревом и потенциальном полях получаются различные выражения (см. (120.3), (81.2)). В качестве примера рассчитаем поток вектора В сквозь соленоид. Магнитная индукция однородного поля внутри соленоида с сердечником с магнитной проницаемостью m, согласно (119.2), равна Магнитный поток сквозь один виток соленоида площадью S равен а полный магнитный поток, сцепленный со всеми витками соленоида и называемый потокосцеплением, Дивергенция (от лат. divergere — обнаруживать расхождение) — дифференциальный оператор, отображающий векторное поле на скалярное (то есть операция дифференцирования, в результате применения которой к векторному полю получается скалярное поле), который определяет (для каждой точки), «насколько расходится входящее и исходящее из малой окрестности данной точки поле» (точнее — насколько расходятся входящий и исходящий поток).
30. Работа при движении контура (проводника) с током в магнитном поле. На проводник с током в магнитном поле действуют силы, определяемые законом Ампера. Если проводник не закреплен (например, одна из сторон контура изготовлена в виде подвижной перемычки, рис. 177), то под действием силы Ампера он будет в магнитном поле перемещаться. Следовательно, магнитное поле совершает работу по перемещению проводника с током. Для определения этой работы рассмотрим проводник длиной l с током I (он может свободно перемещаться), помещенный в однородное внешнее магнитное поле, перпендикулярное плоскости контура. Сила, направление которой определяется по правилу левой руки, а значение — по закону Ампера (см. (111.2)), равна Под действием этой силы проводник переместится параллельно самому себе на отрезок dx из положения 1 в положение 2. Работа, совершаемая магнитным полем, равна так как ldx=dS — площадь, пересекаемая проводником при его перемещении в магнитном поле, BdS=dФ — поток вектора магнитной индукции, пронизывающий эту площадь. Таким образом, (121.1) т. е. работа по перемещению проводника с током в магнитном поле равна произведению силы тока на магнитный поток, пересеченный движущимся проводником. Полученная формула справедлива и для произвольного направления вектора В. Вычислим работу по перемещению замкнутого контура с постоянным током I в магнитном поле. Предположим, что контур М перемещается в плоскости чертежа и в результате бесконечно малого перемещения займет положение М', изображенное на рис. 178 штриховой линией. Направление тока в контуре (по часовой стрелке) и магнитного поля (перпендикулярно плоскости чертежа — за чертеж) указано на рисунке. Контур М мысленно разобьем на два соединенных своими концами проводника: AВС и CDА. Работа dA, совершаемая силами Ампера при рассматриваемом перемещении контура в магнитном поле, равна алгебраической сумме работ по перемещению проводников AВС (dA1) и CDA (dA2), т. е. (121.2) Силы, приложенные к участку CDA контура, образуют с направлением перемещения острые углы, поэтому совершаемая ими работа dA2> 0..Согласно (121.1), эта работа равна произведению силы тока I в контуре на пересеченный проводником CDA магнитный поток. Проводник CDA пересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ2, пронизывающий контур в его конечном положении. Следовательно, (121.3) Силы, действующие на участок AВС контура, образуют с направлением перемещения тупые углы, поэтому совершаемая ими работа dA1< 0. Проводник AВСпересекает при своем движении поток dФ0 сквозь поверхность, выполненную в цвете, и поток dФ1, пронизывающий контур в начальном положении. Следовательно, (121.4) Подставляя (121.3) и (121.4) в (121.2), получим выражение для элементарной работы: где dФ2—dФ1=dФ' — изменение магнитного потока сквозь площадь, ограниченную контуром с током. Таким образом, (121.5) Проинтегрировав выражение (121.5), определим работу, совершаемую силами Ампера, при конечном произвольном перемещении контура в магнитном поле: (121.6) т. е. работа по перемещению замкнутого контура с током в магнитном поле равна произведению силы тока в контуре на изменение магнитного потока, сцепленного с контуром. Формула (121.6) остается справедливой для контура любой формы в произвольном магнитном поле. Теорема о циркуляции вектора В. Вихрь магнитного поля (rot В). Токи намагничивания, по своей природе, те же, что и токи проводимости, для которых получены уравнения описывающие магнитное поле в вакууме. 1. или - фундаментальное свойство магнитного поля. 2. Охв или - справедливо в вакууме, а в магнетиках необходимо учитывать токи намагничивания: , где - объемная плотность токов проводимости. - теорема о циркуляции вектора магнитной индукции в магнетиках (веществе): циркуляция вектора магнитной индукции по любому замкнутому контуру в магнетиках равна произведению магнитной постоянной на суммарный ток проводимости и намагничивания сквозь любую замкнутую поверхность, опирающуюся на этот контур. Распределение и сила токов намагничивания не известны, поэтому эта формула непригодна для расчетов поля. Преобразуем выражение теоремы о циркуляции в дифференциальной форме, используя связь объемных токов намагничивания с вектором намагничивания: , . Введем вектор напряженности магнитного поля: , тогда - дифференциальная форма теоремы о циркуляции для вектора напряженности. - теорема о циркуляции вектора напряженности магнитного поля: циркуляция вектора напряженности по любому замкнутому контуру равна суммарному току проводимости, охваченному этим контуром. Эта теорема позволяет, по известным токам проводимости, получить функциональную зависимость напряженности магнитного поля от координат в любом магнетике, в том числе и анизотропном. А/м Хотя циркуляция вектора напряженности определяется только токами проводимости, сам вектор напряженности включает в себя вектор намагничивания, характеризующий намагниченность среды. Поэтому напряженность магнитного поля не является чисто полевой характеристикой, и в литературе иногда этот вектор называют вспомогательным. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 460; Нарушение авторского права страницы