Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
ЗСИ: В замкнутой системе геометрическая сумма импульсов тел остается постоянной при любых взаимодействиях тел этой системы между собой.Стр 1 из 6Следующая ⇒
Билет №1 Механи́ ческим движе́ нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики. Система отсчёта — это совокупность точки отсчёта, системы координат и системы отсчёта времени, связанных с этой точкой, по отношению к которой изучается движение (или равновесие) каких-либо других материальных точек или тел Ра́ диус-ве́ ктор (обычно обозначается или просто ) — вектор, задающий положения точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат. Перемещение в классической механике — направленный отрезок, характеризующий изменение положения материальной точки в пространстве. Обладает свойствами вектора, поэтому является векторной величиной. Обладает свойством аддитивности. Ско́ рость (часто обозначается , от англ. velocity или фр. vitesse) — векторная физическая величина, характеризующая быстроту перемещения и направление движения материальной точки в пространстве относительно выбранной системы отсчёта Ускоре́ ние (обычно обозначается , в теоретической механике ) — производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени Траекто́ рия материа́ льной то́ чки — линия в трёхмерном пространстве, представляющая собой множество точек, в которых находилась, находится или будет находиться материальная точка при своём перемещении в пространстве. Поступательное движение — это механическое движение системы точек (тела), при котором любой отрезок прямой, связанный с движущимся телом, форма и размеры которого во время движения не меняются, остается параллельным своему положению в любой предыдущий момент времени. Равнопеременным движением (равноускоренным или равнозамедленным) называется такое движение, при котором модуль скорости за любые равные интервалы времени изменяется (увеличивается или уменьшается) на равную величину.
Билет №2 Поступательное движение — это механическое движение системы точек (тела), при котором любой отрезок прямой, связанный с движущимся телом, форма и размеры которого во время движения не меняются, остается параллельным своему положению в любой предыдущий момент времени. Прямолинейное движение — механическое движение, при котором вектор перемещения ∆ r не меняется по направлению и по величине равен длине пути, пройденного телом Криволинейное движение – это движение, траектория которого представляет собой кривую линию Если траекторией является прямая линия, то движение называют прямолинейным, если кривая – криволинейным Нормальное ускорение - составляющая ускорения точки при криволинейном движении, направленная по нормали к ее траектории в сторону центра кривизны. Нормальным ускорением называется также центростремительным. Нормальное ускорение численно равно v2/p, - где v - скорость точки, p - радиус кривизны траектории Тангенциа́ льное ускоре́ ние — компонента ускорения, направленная по касательной к траектории движения. Совпадает с направлением вектора скорости при ускоренном движении и противоположно направлено при замедленном. Билет №3 ??????????? Дина́ мика (греч. δ ύ ν α μ ι ς — сила) — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия. ??????????? Инерциа́ льная систе́ ма отсчёта (ИСО) — система отсчёта, в которой справедлив закон инерции: все свободные тела (то есть такие, на которые не действуют внешние силы или действие этих сил компенсируется) движутся прямолинейно и равномерно или покоятся 1 З.Н.: Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго. 2 З.Н.: В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе. 3 З.Н.: Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению Преобразова́ ния Галиле́ я — в классической механике (механике Ньютона) преобразования координат и времени при переходе от одной инерциальной системы отсчета (ИСО) к другой. Преобразования Галилея подразумевают одинаковость времени во всех системах отсчета («абсолютное время»[3]) и выполнение принципа относительности. Преобразования Галилея являются предельным (частным) случаем преобразований Лоренца для скоростей, малых по сравнению со скоростью света в пустоте и в ограниченном объёме пространства. Для скоростей вплоть до порядка скоростей движения планет в Солнечной системе (и даже бо́ льших), преобразования Галилея приближенно верны с очень большой точностью.
Билеты №4 Импульсом материальной точки называют величину равную произведению массы точки на ее скорость. Импульс системы материальных точек является величиной аддитивной, то есть импульс системы материальных точек равен сумме импульсов отдельных точек, входящих в систему, независимо от того, взаимодействуют они между собой или нет. Из второго и третьего законов Ньютона следует, что первая производная по времени t от импульса р механической системы (I.2.3.4°) равна главному вектору всех внешних сил, приложенных к системе, Это уравнение выражает закон изменения импульса системы. Билет №5 Центр масс, центр инерции, геометрическая точка, положение которой характеризует распределение масс в теле или механической системе. Координаты Ц. м. определяются формулами
Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом: где — радиус-вектор центра масс, — радиус-вектор i-й точки системы, — масса i-й точки. Для случая непрерывного распределения масс:
где: — суммарная масса системы, — объём, — плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц. Центр масс системы движется так же, как двигалась бы частица с массой, равной массе системы, под действием силы, равной векторной сумме всех внешних сил, действующих на входящие в систему частицы.
Билет №6 Механическая работа — это физическая величина, являющаяся скалярной количественной мерой действия силы или сил на тело или систему, зависящая от численной величины и направления силы (сил) и от перемещения точки (точек) тела или системы. Работа сил над системой материальных точек определяется как сумма работ этих сил над каждой точкой (работы, совершённые над каждой точкой системы, суммируются в суммарную работу этих сил над системой). Мо́ щность — физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени. – средняя, – мгновенная. Кинети́ ческая эне́ ргия — энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Теорема об изменении кинетической энергии системы: в дифференциальной форме: dT = , , – элементарные работы, действующих на точку внешних и внутренних сил, в конечной форме: Т2 – Т1= . Для неизменяемой системы и Т2 – Т1= , т.е. изменение кинетической энергии твердого тела на некотором перемещении равно сумме работ внешних сил, действующих на тело на этом перемещении.
Билет №7 Если в каждой точке пространства на помещенную туда частицу действует сила, то говорят, что частица находится в поле сил. Так, например, частица может находиться в поле сил тяжести, в поле упругих сил, в поле сил сопротивления (в потоке жидкости, газе). Поле сил, остающееся постоянным во времени, называется стационарным. В стационарном силовом поле сила, действующая на частицу, зависит только от ее положения. Работа, которую совершают силы поля при перемещении частицы из точки 1 в точку 2, зависит, вообще говоря, от траектории, по которой перемещается частица из начального положения в конечное. Вместе с тем, имеются стационарные силовые поля, в которых работа, совершаемая над частицами силами поля, не зависит от формы траектории между точками 1 и 2. Силы, обладающие таким свойством, называются потенциальными или консервативными, а соответствующее поле сил – потенциальным полем. Примером потенциальных сил являются упругие силы, сила тяжести.
Для определения потенциальности поля можно ввести другой критерий. Вычислим работу сил по замкнутому контуру. Разобьем замкнутый контур на две части и (рис. 3.10). Тогда работа на замкнутом контуре . Нетрудно сообразить, что . А так как в нашем случае работа не зависит от формы траектории, то в результате и оказывается, что работа сил при движении частицы на произвольной замкнутой траектории действительно равна нулю. На этом основании можно утверждать, что потенциальным называется поле, в котором работа сил по замкнутому контуру равна нулю. С другой стороны, очевидно, – чтобы поле было потенциальным, нужно, чтобы работа сил поля на любом замкнутом контуре была равна нулю. Все силы, не являющиеся потенциальными, называются непотенциальными или диссипативными. К числу непотенциальных сил относятся, например, силы трения и сопротивления. Работа этих сил зависит от формы траектории между начальным и конечным положениями частицы (и не равна нулю при перемещении вдоль замкнутого контура). Потенциальная энергия — скалярная физическая величина, характеризующая способность некоего тела (или материальной точки) совершать работу за счет его нахождения в поле действия сил. Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии. Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными. Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля. Любая физическая система стремится к состоянию с наименьшей потенциальной энергией. Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела. Потенциальная энергия в поле тяготения Земли вблизи поверхности приближённо выражается формулой: Ep = mgh Центральная сила — приложенная к материальному телу сила, линия действия которой при любом положении тела на своей траектории проходит через точку, называемую центром силы. Тело при этом рассматривается как движущаяся материальная точка, а центр также считается материальной точкой, в простейшем случае фиксированной в пространстве. Примерами центральных сил являются силы тяготения и Кулона, направленные вдоль линии, соединяющей точечные массы или точечные заряды. Потенциальная энергия материальной точки: Потенциальная энергия упругости Еп равна: Eп = 1/2 kl2. Здесь потенциальная энергия выражена через коэффициент упругости пружины и через наибольшее растяжение ее.
Билет №8 В физике механи́ ческая эне́ ргия описывает сумму потенциальной и кинетической энергии, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением. Механическая энергия системы - скалярная функция состояния системы. Понятие о кинетической и потенциальной энергии. - закон изменения мех. энергии системы тел. Закон сохранения механической энергии утверждает, что если тело или система подвергается действию только консервативных сил, то полная механическая энергия этого тела или системы остаётся постоянной. В изолированной системе, где действуют только консервативные силы, полная механическая энергия сохраняется. Закон сохранения и превращения энергии - общий закон природы, согласно которому: Билет №9 Результат столкновения двух тел можно полностью рассчитать, если известно их движение до удара и механическая энергия после удара. Обычно рассматривают либо абсолютно упругий удар, либо вводят коэффициент сохранения энергии k, как отношение кинетической энергии после удара к кинетической энергии до удара при ударе одного тела о неподвижную стенку, сделанную из материала другого тела. Таким образом, k является характеристикой материала, из которого изготовлены тела, и (предположительно) не зависит от остальных параметров тел (формы, скорости и т. п.). Если не известны потери энергии, происходит одновременное столкновение нескольких тел или столкновение точечных частиц, то определить однозначно движение тел после удара невозможно. В этом случае рассматривается зависимость возможных углов рассеяния и скоростей тел после удара от начальных условий. Например, при столкновении двух элементарных частиц рассеяние может произойти лишь в некотором диапазоне углов, определяющемся предельным углом рассеяния. В общем случае решение задачи о столкновении кроме знания начальных скоростей требует дополнительных параметров. Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков. Абсолютно упругий удар может выполняться совершенно точно при столкновениях элементарных частиц низких энергий. Это следствие принципов квантовой механики, запрещающей произвольные изменения энергии системы. Если энергии сталкивающихся частиц недостаточно для возбуждения их внутренних степеней свободы, то механическая энергия системы не меняется. Изменение механической энергии может также быть запрещено какими-то законами сохранения (момента импульса, чётности и т. п.). Надо, однако, учитывать, что при столкновении может изменяться состав системы. Простейший пример — излучение кванта света. Также может происходить распад или слияние частиц, а в определённых условиях — рождение новых частиц. В замкнутой системе при этом выполняются все законы сохранения, однако при вычислениях нужно учитывать изменение системы. Абсолю́ тно неупру́ гий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело. Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Энергия, конечно же, никуда не исчезает, а переходит в тепловую. Хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики.
Билет №10 Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент ) — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело. Моментом силы относительно неподвижной оси z называется скалярная величина Mz, равная проекции на эту ось вектора М момента силы, определенного относительно произвольной точки О данной оси z (рис. 26). Значение момента Мz не зависит от выбора положения точки О на оси z. Если ось z совпадает с направлением вектора М, то момент силы представляется в виде вектора, совпадающего с осью: Основной закон динамики твердого тела, вращающегося вокруг неподвижной оси, имеет вид: M=J* где – алгебраическая сумма моментов сил, действующих на тело относительно оси вращения, – момент инерции тела относительно той же оси, – угловое ускорение.
Билет №11 Момент инерции — скалярная физическая величина, мера инертности тела во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости). Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: где: mi — масса i-й точки, ri — расстояние от i-й точки до оси. Физический смысл момента инерции: Инерционные свойства при поступательном движении характеризуются только массой тела, т.е. зависит только от массы. Инерционные свойства при вращательном движении характеризуются моментом инерции, т.е. зависят от его массы, расстояния до оси вращения и расположению теда по отношению к этой оси. Последнее означает, что относительно двух разных осей инерционные свойства вращательного движения одного и того же движения тела будут разными. Теоре́ ма Гю́ йгенса — Ште́ йнера, или просто теорема Штейнера: момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела JC относительно параллельной ей оси, проходящей через центр масс тела, и произведения массы тела m на квадрат расстояния d между осями: где JC — известный момент инерции относительно оси, проходящей через центр масс тела, J — искомый момент инерции относительно параллельной оси, m — масса тела, d — расстояние между указанными осями. Вывод Момент инерции, по определению: Радиус-вектор можно расписать как разность двух векторов: где — радиус-вектор расстояния между старой и новой осью вращения. Тогда выражение для момента инерции примет вид:
Вынося за сумму , получим: Поскольку старая ось проходит через центр масс, то суммарный импульс тела будет равен нулю:
Тогда: Откуда и следует искомая формула: где JC — известный момент инерции относительно оси, проходящей через центр масс тела. Билет №12 Враща́ тельное движе́ ние — вид механического движения. При вращательном движении абсолютно твёрдого тела его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами. Ось вращения в данной системе отсчёта может быть как подвижной, так и неподвижной. Например, в системе отсчёта, связанной с Землёй, ось вращения ротора генератора на электростанции неподвижна. Угловое перемещение — векторная величина, характеризующая изменение угловой координаты в процессе её движения. Углова́ я ско́ рость — векторная физическая величина, характеризующая скорость вращения тела. Вектор угловой скорости по величине равен углу поворота тела в единицу времени: а направлен по оси вращения согласно правилу буравчика, то есть, в ту сторону, в которую ввинчивался бы буравчик с правой резьбой, если бы вращался в ту же сторону. Вектор (мгновенной) скорости любой точки (абсолютно) твердого тела, вращающегося с угловой скоростью определяется формулой: Углово́ е ускоре́ ние — псевдовекторная физическая величина, характеризующая быстроту изменения угловой скорости твёрдого тела. При вращении тела вокруг неподвижной оси, угловое ускорение по модулю равно[1]: Вектор углового ускорения α направлен вдоль оси вращения (в сторону при ускоренном вращении и противоположно — при замедленном). При вращении вокруг неподвижной точки вектор углового ускорения определяется как первая производная от вектора угловой скорости ω по времени[2], то есть и направлен по касательной к годографу вектора в соответствующей его точке. Существует связь между тангенциальным и угловым ускорениями: где R — радиус кривизны траектории точки в данный момент времени. Итак, угловое ускорение равно второй производной от угла поворота по времени или первой производной от угловой скорости по времени. Угловое ускорение измеряется в рад/сек2 Связь линейных и угловых величин:
Билет №13 Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением: где r - радиус-вектор, проведенный из точки О в точку A, p =m v - импульс материальной точки (рис. 1); L - псевдовектор, направление которого совпадает с направлением поступательного движения правого винта при его вращении от r к р. Моме́ нт и́ мпульса ( кинетический момент, угловой момент, орбитальный момент, момент количества движения ) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение. В тех случаях, когда твердое тело вращается вокруг неподвижной оси, обычно оперируют с понятиями момента импульса и момента инерции относительно оси. Момент импульса относительно оси - это проекция на данную ось момента импульса L, определенного относительно некоторой точки О, принадлежащей оси, причем, как оказывается, выбор точки О на оси значения не имеет. Действительно, при вычислении существенно лишь плечо импульса относительно оси вращения O'O'' (рис. 2.12), то есть кратчайшее расстояние массы до оси: Билет №14 Кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно разбить: Если тело вращается вокруг неподвижной оси с угловой скоростью , то линейная скорость i-ой точки равна , где , - расстояние от этой точки до оси вращения. Следовательно.
где - момент инерции тела относительно оси вращения. В общем случае движение твердого тела можно представить в виде суммы двух движений - поступательного со скоростью, равной скорости центра инерции тела, и вращения с угловой скоростью вокруг мгновенной оси, проходящей через центр инерции. При этом выражение для кинетической энергии тела преобразуется к виду
где - момент инерции тела относительно мгновенной оси вращения, проходящей через центр инерции. Теорема Кёнига позволяет выразить полную кинетическую энергию системы через энергию движения центра масс и энергию движения относительно центра масс. Кинетическая энергия системы есть энергия движения центра масс плюс энергия движения относительно центра масс: где T — полная кинетическая энергия, — энергия движения центра масс, — относительная кинетическая энергия. Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы во вращательном движении относительно центра масс. Вывод Выразим относительную кинетическую энергию Tr системы S как энергию, вычисленной относительно подвижной системы координат. Пусть — радиус-вектор рассматриваемой точки в подвижной системе координат. Тогда: Если — радиус-вектор начала координат подвижной системы, а — радиус-вектор рассматриваемой точки в исходной системе координат, то верно соотношение: Вычислим полную кинетическую энергию системы в случае, если начало координат подвижной системы помещено в её центр масс. С учетом предыдущего соотношения: Раскрывая скобки и вынося из-под знака интеграла, получаем: Первое слагаемое представляет собой кинетическую энергию материальной точки, помещённой в начало координат подвижной системы и имеющей массу, равную массе этой системы. Второй член равен нулю, так как по предположению начало координат подвижной системы помещено в её центр масс, следовательно, . Третий член равен Tr, введённой ранее относительной энергии системы.
Билет №15 Специальная теория относительности ( СТО; также частная теория относительности ) — теория, описывающая движение, законы механики и пространственно-временные отношения при произвольных скоростях движения, меньших скорости света в вакууме, в том числе близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности. Основные понятия и постулаты СТО Специальная теория относительности, как и любая другая физическая теория, может быть сформулирована на базе из основных понятий и постулатов (аксиом) плюс правила соответствия её физическим объектам. Основные понятия Система отсчёта представляет собой некоторое материальное тело, выбираемое в качестве начала этой системы, способ определения положения объектов относительно начала системы отсчёта и способ измерения времени. Обычно различают системы отсчёта и системы координат. Добавление процедуры измерения времени к системе координат «превращает» её в систему отсчёта. Инерциальная система отсчёта (ИСО) — это такая система, относительно которой объект, не подверженный внешним воздействиям, движется равномерно и прямолинейно. Постулируется, что любая система отсчёта, движущаяся относительно данной инерциальной системы равномерно и прямолинейно, также является ИСО. Событием называется любой физический процесс, который может быть локализован в пространстве, и имеющий при этом очень малую длительность. Другими словами, событие полностью характеризуется координатами (x, y, z) и моментом времени t. Примерами событий являются: вспышка света, положение материальной точки в данный момент времени и т. п. Обычно рассматриваются две инерциальные системы S и S'. Время и координаты некоторого события, измеренные относительно системы S обозначаются как (t, x, y, z), а координаты и время этого же события, измеренные относительно системы S', как (t', x', y', z'). Удобно считать, что координатные оси систем параллельны друг другу и система S' движется вдоль оси x системы S со скоростью v. Одной из задач СТО является поиск соотношений, связывающих (t', x', y', z') и (t, x, y, z), которые называются преобразованиями Лоренца. Синхронизация времени В СТО постулируется возможность определения единого времени в рамках данной инерциальной системы отсчёта. Для этого вводится процедура синхронизации двух часов, находящихся в различных точках ИСО. Пусть от первых часов, в момент времени t1 ко вторым посылается сигнал (не обязательно световой) с постоянной скоростью u. Сразу по достижении вторых часов (по их показаниям в момент времени T) сигнал отправляется обратно с той же постоянной скоростью u и достигает первых часов в момент времени t2. Часы считаются синхронизированными, если выполняется соотношение T = (t1 + t2) / 2. Предполагается, что такая процедура в данной инерциальной системе отсчёта может быть проведена для любых неподвижных относительно друг друга часов, так что справедливо свойство транзитивности: если часы A синхронизованы с часами B, а часы B синхронизованы с часами C, то часы A и C также окажутся синхронизованными. В отличие от классической механики единое время можно ввести только в рамках данной системы отсчёта. В СТО не предполагается, что время является общим для различных систем. В этом состоит основное отличие аксиоматики СТО от классической механики, в которой постулируется существование единого (абсолютного) времени для всех систем отсчёта. Линейность преобразований Простейшими преобразованиями между двумя ИСО являются линейные. Например, для координаты x и времени t можно записать: где Ai, Bi, Ci — некоторые постоянные коэффициенты, которые могут зависеть от единственного параметра — относительной скорости v. Линейность преобразований обычно связывается с однородностью пространства и времени. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 720; Нарушение авторского права страницы