Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Постулаты Специальной Теории Относительности (СТО)
Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (υ < < c). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени t, одинакового во всех системах отсчета. В основе классической механики лежит механический принцип относительности (или принцип относительности Галилея ): законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (то есть неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). В частном случае, когда система K' движется со скоростью υ вдоль положительного направления оси x системы K (рис. 7.1.1), преобразования Галилея имеют вид:
Предполагается, что в начальный момент оси координат обеих систем совпадают.
Из преобразований Галилея следует классический закон преобразования скоростей при переходе от одной системы отсчета к другой:
Ускорения тела во всех инерциальных системах оказываются одинаковыми:
Следовательно, уравнение движения классической механики (второй закон Ньютона) не меняет своего вида при переходе от одной инерциальной системы к другой. К концу XIX века начали накапливаться опытные факты, которые вступили в противоречие с законами классической механики. Большие затруднения возникли при попытках применить механику Ньютона к объяснению распространения света. Предположение о том, что свет распространяется в особой среде – эфире, было опровергнуто многочисленными экспериментами. А. Майкельсон в 1881 году, а затем в 1887 году совместно с Э. Морли (оба – американские физики) пытался обнаружить движение Земли относительно эфира («эфирный ветер») с помощью интерференционного опыта. Упрощенная схема опыта Майкельсона–Морли представлена на рис. 7.1.2.
В этом опыте одно из плеч интерферометра Майкельсона устанавливалось параллельно направлению орбитальной скорости Земли (υ = 30 км/с). Затем прибор поворачивался на 90°, и второе плечо оказывалось ориентированным по направлению орбитальной скорости. Расчеты показывали, что если бы неподвижный эфир существовал, то при повороте прибора интерференционные полосы должны были сместиться на расстояние, пропорциональное (υ / c)2. Опыт Майкельсона–Морли, неоднократно повторенный впоследствии со все более возрастающей точностью, дал отрицательный результат. Анализ результатов опыта Майкельсона–Морли и ряда других экспериментов позволил сделать вывод о том, что представления об эфире как среде, в которой распространяются световые волны, ошибочно. Следовательно, для света не существует избранной (абсолютной) системы отсчета. Движение Земли по орбите не оказывает влияния на оптические явления на Земле. Исключительную роль в развитии представлений о пространстве и времени сыграла теория Максвелла. К началу XX века эта теория стала общепризнанной. Предсказанные теорией Максвелла электромагнитные волны, распространяющиеся с конечной скоростью, уже нашли практическое применение – в 1895 году было изобретено радио (А. С. Попов). Но из теории Максвелла следовало, что скорость распространения электромагнитных волн в любой инерциальной системе отсчета имеет одно и то же значение, равное скорости света в вакууме. Отсюда следует, что уравнения, описывающие распространение электромагнитных волн, не инвариантны относительно преобразований Галилея. Если электромагнитная волна (в частности, свет) распространяется в системе отсчета K' (рис. 7.1.1) в положительном направлении оси x', то в системе K свет должен, согласно галилеевской кинематике распространяться со скоростью c + υ, а не c. Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Выход был найден Эйнштейном ценой отказа от классических представлений о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными, то есть не зависящими от системы отсчета, в эйнштейновской теории относительности переведены в разряд относительных. Так как все физические явления происходят в пространстве и во времени, новая концепция пространственно-временных закономерностей не могла не затронуть в итоге всю физику. В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г.
Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п. Постулаты СТО находятся в явном противоречии с классическими представлениями. Рассмотрим такой мысленный эксперимент: в момент времени t = 0, когда координатные оси двух инерциальных систем K и K' совпадают, в общем начале координат произошла кратковременная вспышка света. За время t системы сместятся относительно друг друга на расстояние υ t, а сферический волновой фронт в каждой системе будет иметь радиус ct (рис. 7.1.3), так как системы равноправны и в каждой из них скорость света равна c.
С точки зрения наблюдателя в системе K центр сферы находится в точке O, а с точки зрения наблюдателя в системе K' он будет находиться в точке O'. Следовательно, центр сферического фронта одновременно находится в двух разных точках! Причина возникающего недоразумения лежит не в противоречии между двумя принципами СТО, а в допущении, что положение фронтов сферических волн для обеих систем относится к одному и тому же моменту времени. Это допущение заключено в формулах преобразования Галилея, согласно которым время в обеих системах течет одинаково: t = t'. Следовательно, постулаты Эйнштейна находятся в противоречии не друг с другом, а с формулами преобразования Галилея. Поэтому на смену галилеевых преобразований СТО предложила другие формулы преобразования при переходе из одной инерциальной системы в другую – так называемые преобразования Лоренца, которые при скоростях движения, близких к скорости света, позволяют объяснить все релятивисткие эффекты, а при малых скоростях (υ < < c) переходят в формулы преобразования Галилея. Таким образом, новая теория (СТО) не отвергла старую классическую механику Ньютона, а только уточнила пределы ее применимости. Такая взаимосвязь между старой и новой, более общей теорией, включающей старую теорию как предельный случай, носит название принципа соответствия.
Билет №16 Преобразова́ ния Ло́ ренца — линейные (или аффинные) преобразования векторного (соответственно, аффинного) псевдоевклидова пространства, сохраняющее длины или, что эквивалентно, скалярное произведение векторов. Преобразования Лоренца псевдоевклидова пространства сигнатуры (n-1, 1) находят широкое применение в физике, в частности, в специальной теории относительности (СТО), где в качестве аффинного псевдоевклидова пространства выступает четырёхмерный пространственно-временной континуум (пространство Минковского). |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 450; Нарушение авторского права страницы