Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Равномерное движение по окружности.



Равномерное движение по окружности.

Пройденный путь S, перемещение dr, скорость v, тангенциальное и нормальное ускорение at, и an, представляют собой линейные величины. Для описания криволинейного движения наряду снимиможно пользоваться угловыми величинами.

Рассмотрим более подробно важный и часто встречаемый случай движения по окружности. В этом случае наряду с длиной дуги окружности движение можно характеризовать утлом поворота φ вокруг оси вращения. Величину

(1.15)

называют угловой скоростью. Угловая скорость представляет собой вектор, направление которого связывают с направлением оси вращения тела (рис.).

Обратим внимание на то, что, в то время как сам угол поворота φ является скаляром, бесконечно малый поворот dφ — векторная величина, направление которой определяется по правилу правой руки, или буравчика, и связано с осью вращения. Если вращение является равномерным, то ω =const и точка на окружности поворачивается на равные углы вокруг оси вращения за равные времена. Время, за которое она совершает полный оборот, т.е. поворачивается на угол 2π, называется периодом движения Т. Выражение (1.15) можно проинтегрировать в пределах от нуля до Т и получить угловую частоту

. (1.16)

Число оборотов в единицу времени есть величина, обратная периоду, — циклическая частота вращения

ν =1/T. (1.17)

Нетрудно получить связь между угловой и линейной скоростью точки. При движении по окружности элемент дуги связан с бесконечно малым поворотом соотношением dS = R·dφ. Подставив его в (1.15), находим

v = ω r. (1.18)

Формула (1.18) связывает величины угловой и линейной скоростей. Соотношение, связывающее векторы ω и v, следует из рис. А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

. (1.19)

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика.

Угловое ускорение — производная по времени от вектора угловой скорости ω (соответственно вторая производная по времени от угла поворота)

Выразим тангенциальное и нормальное ускорение через угловые скорости и ускорение. Используя связь (1.18), (1.12) и (1.13), получаем

at = β ·R, a =ω 2·R. 9 (1.20)

Таким образом, для полного ускорения имеем

. (1.21)

Величина β играет роль тангенциального ускорения: если β = 0.полное ускорение при вращении точки не равно нулю, a =R·ω 2 ≠ 0.

Законы Ньютона

Законы Ньютона образуют основу динамики — раздела механики, рассматривающего взаимодействие тел.

Первый закон Ньютона отражает свойство инерции, тел и часто называется законом инерции. Он утверждает, что всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Ясно, во-первых, что этот закон выполняется только в инерциальных системах отсчета. Во-вторых, отсюда следует важное заключение, что, поскольку изменение состояния покоя или равномерного движения связано с наличием в системе ускорения, последнее, в свою очередь, возникает как результат воздействия других тел.

Это утверждение создает предпосылки для формулирования второго закона Ньютона.

Воздействие одного физического тела на другое характеризуется физической величиной, называемой силой. Сила, действующая на тело, сообщает ему ускорение. Величина полученного ускорения пропорциональна приложенной силе. Но разные тела под влиянием одинаковых сил приобретают разные ускорения. Данный опытный факт есть проявление уже упоминавшегося свойства инерции тела. Это свойство количественно характеризуется инертной массой тела — коэффициентом пропорциональности между приложенной к телу силой и полученным им ускорением.

Таким образом, второй закон Ньютона может быть записан в форме:

,

где фигурируют вновь введенные физические величины: вектор силы F и инертная масса тела m. В таком виде его можно сформулировать следующим образом: ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.

Грав. масса - характеризует способность тел притягиваться друг к другу, но так как вблизи поверхности Земли все тела испытывают земное притяжение, то ускорение любого тела равно g, поэтому мы инертную массу приравниваем к гравитационной и говорим об одной и той же массе.

 

А различают гравитационную и инертную массу, потому что упоминается масса в двух разных законах Ньютона ( F=ma и F = Gm1m2/r^2), где в первом случае учитываются инертные свойства массы, а во втором гравитационные свойства массы.

 

Третий закон Ньютона имеет дело со взаимодействующими, телами.

 

F12 = F21 m1a1=-m2a2 F1=-F2

 

 

Он утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению. Важно подчеркнуть, что силы, о которых идет речь, приложены к разным взаимодействующим друг с другом телам.

Законы Кепплера:

1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые планеты.

3. Квадраты периодов обращения планет вокруг солнца, относятся как кубы больших полуосей их орбит.

Работа. Вычисление работы.

Если на тело (материальную точку) действует постоянная сила , составляющая постоянный угол с перемещением тела , то работа этой силы определяется как произведение модулей силы и перемещения на косинус угла между векторами силы и перемещения, т. е. как скалярное произведение вектора силы на вектор перемещения: Единица работы в СИ - Дж - равна работе, совершаемой силой в 1 Н на перемещении 1 м вдоль направления действия силы.

Если на тело действует переменная сила, то, чтобы вычислить ее работу, нужно перемещение разбить на малые участки и найти сначала элементарную работу: а затем полную работу как предел суммы элементарных работ: Графически работа определяется по площади криволинейной трапеции. На оси абсцисс откладывают в определенном масштабе модули перемещения, на оси ординат проекции силы (также в соответствующем масштабе). Тогда площадь трапеции численно равна работе силы.

Работа сил тяжести:

Работа сил трения:

Кинетическая энергия

П ро тела, которые могут совершать работу, говорят, что они обладают энергией. Энергией называют скалярную физическую величину, показывающую, какую работу может совершить тело. Энергия равна той максимальной работе, которую тело может совершить в данных условиях. Механическая работа является мерой изменения энергии в различных процессах. Поэтому энергию и работу выражают в одних и тех же единицах (в СИ - в джоулях). В более общем смысле энергия - это единая мера разных форм движения материи, а также мера перехода движения материи из одной формы в другую. Для характеристики конкретных форм движения материи используют понятия о соответствующих видах энергии: механической, внутренней, электромагнитной и т. д. Механическая энергия является характеристикой движения и взаимодействия тел. Она зависит от скоростей и взаимного расположения тел.

Кинетическая энергия

Рассмотрим случай, когда тело массой m под действием постоянной силы (F=const) движется прямолинейно равноускоренно (а=const). Определим работу силы, приложенной к телу, при изменении модуля скорости этого тела от v1 до v2.

Как было отмечено в §17, работу постоянной силы вычисляют по формуле А=Fscosa. Так как в рассматриваемом нами случае направление силы F и перемещения s совпадают, то cosa=1 и А=Fs. По второму закону Ньютона F=ma. В § 2 было показано, что для прямолинейного равноускоренного движения справедлива формула

v2=vo2+2as.

Из этой формулы при vо=v1 и v=v2 Следует, что

s=(v22-v12)/2a.

Подставив значения F и s в формулу работы, получим

А=mv22/2-mv12/2 (3.12).

Из последней формулы видно, что работа силы, приложенной к телу, при изменении скорости этого тела равна разности двух значений некоторой величины mv22/2.

Выше отмечалось, что механическая работа есть мера изменения энергии. Следовательно, в правой части формулы (3.12) стоит разность двух значений энергии данного тела. Это значит, что величина mv22/2 представляет собой энергию, обусловленную движением тела. Эту энергию называют кинетической. Она обозначается Wк. Следовательно,

Wк=mv22/2. (3.13)

С учетом (3.13) формулу (3, 12) можно записать в виде

А=Wk2-Wk1=DWk, (3.14)

т.е. работа, совершаемая силой при изменении скорости тела, равна изменению кинетической энергии этого тела.

Когда направление силы совпадает с направлением перемещения тела, работа силы положительна (т.е. A> 0). Из формулы (3.14) видно, что в этом случае Wk2-Wk1> 0, т.е. Wk2> Wk1. Следовательно, когда сила совершает положительную работу, кинетическая энергия тела увеличивается. Когда же направление силы противоположно направлению перемещения, то A< 0 и Wk2-Wk1< 0, т.е. Wk2< Wk1. Следовательно, когда сила совершает отрицательную работу, кинетическая энергия тела уменьшается.

 

Потенциальная энергия

 

Потенциальная энергия: энергия, обусловленная взаимным расположением тел или частей тела, зависящая от их взаимного положения во внешнем силовом поле.

- Сил тяжести: энергия возможного действия гравитационного поля Земли на материальную точку, расположенную на высоте h над уровнем моря.

- Упругой деформации: запас энергии деформированного упругого тела.

Элементарная работа dA, совершаемая силой Fx при бесконечно малой деформации dx, равна

Потенциальные поля

Если работа сил поля, действующих на перемещающуюся в нём пробную частицу, не зависит от траектории частицы, и определяется только её начальным и конечным положениями, то такое поле называется потенциальным. Для него можно ввести понятие потенциальной энергии частицы — некоторой функции координат частиц такой, что разность её значений в точках 1 и 2 равна работе, совершаемой полем при перемещении частицы из точки 1 в точку 2.

Пример

гравитационное поле земли вблизи поверхности- однородное, электрическое поле вокруг заряженной частицы - центральное

Закон сохранения энергии

Рассмотрим процесс изменения состояния тела, поднятого на высоту h. При этом его потенциальная энергия

Тело начало свободно падать . Из кинематики известно, что момент достижения поверхности земли оно будет иметь скорость и кинетическую энергию:

Кинетическая энергия тела, упавшего с высоты h, оказалась равной его потенциальной энергии, которую оно имело до начала падения. Следовательно:

На поверхности Земли h=0 и потенциальная энергия , а -максимальна. В начале падения , а т.е. потенциальная энергия переходит (превращается) в кинетическую. Таким образом, при падении тела в системе тело-Земля кинетическая энергия возрастает и, следовательно, ее изменение равное работе , имеет положительный знак, т.е.

(4.12)

Потенциальная энергия - уменьшается, и, следовательно, ее изменение имеет знак минус. Поэтому можем записать:

(4.13)

Сложив (4.12) и (4.13), получим

или

Сумма представляет собой полную энергию, и, следовательно,

, а

(4.14)

Таким образом, энергия замкнутой консервативной системы остается постоянной при всех, происходящих в ней процессах и превращениях. Энергия может переходить из одних видов в другие (механические, тепловые, и т.д.), но общее ее количество остается постоянным. Данное положение называют законом сохранения и превращения энергии

 

Гармонические колебания. Определение. Уравнения. Примеры.

Гармонические колебания: простейшие периодические колебания, при которых координата тела х меняется со временем по закону sin или cos.

Пример, движение точки М по окружности радиуса А с постоянной угловой скоростью .

Уравнение гармонических колебаний: где x значение изменяющейся величины в данный момент времени, xm – амплитуда колебаний, -циклическая частота, - начальная фаза.

Амплитуда гармонических колебаний это модуль максимального отклонения изменяющейся величины от положения равновесия.

Циклическая частота это число колебаний за секунд.

 

Термодинамика

Какого бы то ни было начальное состояние изолированной системы оно рано или поздно придет в состояние термодинамического равновесия.

для создания прибора, измеряющего температуру, т. е. термометра, выбирают какое-либо вещество (термометрическое вещество) и определенную величину, характеризующую свойство вещества (термометрическую величину). Выбор того и другого совершенно произволен. В бытовых термометрах, например, термометрическим веществом является ртуть, а термометрической величиной — длина ртутного столбика.

Шкала температур которая используется в термометрической величине PV, называется шкалой ид. Газа.

ИДЕА́ ЛЬНЫЙ ГАЗ, теоретическая модель газа; в которой пренебрегают размерами частиц газа, не учитывают силы взаимодействия между частицами газа, предполагая, что средняя кинетическая энергия частиц много больше энергии их взаимодействия, и считают, что столкновения частиц газа между собой и со стенками сосуда абсолютно упругие.

 

Внутренняя энергия и

Идеальный газ - потенциальная энергия взаимодействия, между молекулами которого равна нулю.

Опыты показывают, что внутренняя энергия идеального газа зависит только от температуры.

Отсутствие зависимости внутренней энергии идеального газа от V указывает на то, что молекулы идеального газа большую часть времени не взаимодействуют друг с другом, т.е. подавляющую часть времени молекулы находятся в свободном полете.

 

Политропические процессы.

Политропическим называется процесс, при котором теплоемкость тела остается постоянной.

Уравнение политропы идеального газа для случая :

Уравнение политропы идеального газа для случая:

Если изобарный.

Если изотермический.

Если адиабатный

Если изохорный.

 

Распределение Максвелла.

Распределение Максвелла:

или

Кроме полученного выше распределения Максвелла часто при проведении расчетов используется распределение по абсолютным значениям скоростей молекул газа. Для получения этого распределения запишем в общем виде вероятность того, что значения проекций скорости лежат внутри элементарного объема пространства скоростей: :

Учитывая то, что эта вероятность зависит только от величины скорости и не зависит от её направления в пространстве, элементарный объем можно считать имеющим форму шарового слоя со средним радиусом v и толщиной dv. Указанная возможность связана с тем, что в любой точке на поверхности сферы, центр которой совпадает с началом координат пространства скоростей, значения скорости , а следовательно и функции , одинаковые. Считая шаровой слой тонким, и записывая его элементарный объем в виде: , выражение может быть представлено в форме . Функция или называется функцией распределения Максвелла по абсолютным значениям скоростей, и она показывает вероятность того, что величина скорости имеет значения от до .

Распределение Больцмана

, где - концентрация газа в точке, соответствующей началу координат при условии, что .

Формула была впервые получена в 1866 году Л. Больцманом и описывает распределение, получившее название распределения Больцмана. Это распределение позволяет рассчитывать концентрацию газа, находящегося в равновесном состоянии во внешнем силовом поле. Причем это поле не должно быть обязательно гравитационным, а может иметь любое происхождение, в частности, быть электростатическим или полем сил инерции.

Анализ распределения Больцмана показывает, что концентрация молекул газа тем выше, чем меньше их потенциальная энергия. Кроме этого, с понижением температуры увеличивается отличие концентраций в точках с различными значениями потенциальной энергии молекул. А при стремлении температуры к абсолютному нулю, молекулы начинают скапливаться в месте, где их потенциальная энергия принимает наименьшее значение. Указанные особенности распределения Больцмана являются следствием теплового движения молекул, так как кинетическая энергия их поступательного движения в среднем равна и уменьшается пропорционально уменьшению температуры. А уменьшение кинетической энергии приводит к уменьшению количества молекул, способных преодолеть потенциальный порог, высота которого характеризуется величиной потенциальной энергии высотой .

Квазистатические процессы – идеализированные, которые проходят бесконечно долго.

Количество теплоты

Уравнение р.майера

Обьект - ИГ Теплоемкостью тела С называется отношение бесконечно ма юго количества тепла бQ, полученного телом, к соответствующему приращению dT его температуры:

Если учесть по первому закону термодинамике:
можно написать

Надо учеть:
Легко выводиться

Особое значение имеют теплоемкости при постоянном объеме и постоянном давлении, обозначаемые символами Cv и Ср. Если объем остается постоянным, то dV = 0, и следовательно,

Если же постоянно давление, то отношение переходит в частную производную В этом случае

Для разности теплоемностей Сp—Cv получаем

По закону Джоуля . Из уравнения Клапейрона следует . Поэтому указанная формула дает

Это важное соотношение называется уравнением Роберта Майера. Подставляя это соотношение в формулы теплоёмкости получаем для изохорной.
Для изобарной:

Измерив теплоемкости Сp и Cv газа, можно вычислить механический эквивалент теплоты. Для этого можно воспользоваться уравнением Роберта Майера. Измеряя количество тепла в калориях, можно на опыте найти разность Сp—Cv в тепловых единицах. С другой стороны, газовую постоянную R можно измерить в механических единицах.

Явление переноса.

Нарушение равновесия сопровождается возникновением потоков либо молекул, либо тепла, либо эл заряда и т.п. В связи с этим соответствующие процессы носят названия явлений переноса. Явления переноса представляют собой необратимые процессы.

Теплота передается посредством конвекции(направленный поток более теплой жидкости или газа к более холодным частям), теплопроводности и излучения.

Теплопроводность. Пусть системе сообщено некоторое количество тепла. При этом некоторая часть системы оказывается более нагретой, откуда тепло посредством столкновений распространяется по всему объему, т. е. возникает поток тепла. Переносимая физическая величина в этом случае — тепло. .

Количество теплоты, переданное слоем вещества толщиной , площади S при поддерживании на его плоскостях разности температур за время t.

‑ коэффициент теплопроводности.

Диффузия. Если в систему добавляется некоторое количество частиц того или другого сорта, то в объеме возникает неоднородное распределение концентрации этих частиц и в силу указанных причин возникает поток концентрации этих частиц. Процесс выравнивания концентраций, обусловленный механизмом столкновений, называется диффузией.

, ,

D - коэффициент диффузии, – изменение концентрации.

Вязкость. При относительном параллельном смещении слоев жидкости или газа в нем возникают силы трения, тормозящие движение слоев, движущихся с большей скоростью, и ускоряющие слои с меньшей скоростью. Причиной вязкости является перенос количества движения (импульса) упорядоченного движения молекулами, переходящими из одного слоя в другой. Импульс течет в направлении убывания скорости.

Величина силы внутреннего трения:

,

Где - отношение разности скоростей слоев к расстоянию между ними. S- площадь соприкосновения слоев. v -коэффициент вязкости среды.

 

Равномерное движение по окружности.

Пройденный путь S, перемещение dr, скорость v, тангенциальное и нормальное ускорение at, и an, представляют собой линейные величины. Для описания криволинейного движения наряду снимиможно пользоваться угловыми величинами.

Рассмотрим более подробно важный и часто встречаемый случай движения по окружности. В этом случае наряду с длиной дуги окружности движение можно характеризовать утлом поворота φ вокруг оси вращения. Величину

(1.15)

называют угловой скоростью. Угловая скорость представляет собой вектор, направление которого связывают с направлением оси вращения тела (рис.).

Обратим внимание на то, что, в то время как сам угол поворота φ является скаляром, бесконечно малый поворот dφ — векторная величина, направление которой определяется по правилу правой руки, или буравчика, и связано с осью вращения. Если вращение является равномерным, то ω =const и точка на окружности поворачивается на равные углы вокруг оси вращения за равные времена. Время, за которое она совершает полный оборот, т.е. поворачивается на угол 2π, называется периодом движения Т. Выражение (1.15) можно проинтегрировать в пределах от нуля до Т и получить угловую частоту

. (1.16)

Число оборотов в единицу времени есть величина, обратная периоду, — циклическая частота вращения

ν =1/T. (1.17)

Нетрудно получить связь между угловой и линейной скоростью точки. При движении по окружности элемент дуги связан с бесконечно малым поворотом соотношением dS = R·dφ. Подставив его в (1.15), находим

v = ω r. (1.18)

Формула (1.18) связывает величины угловой и линейной скоростей. Соотношение, связывающее векторы ω и v, следует из рис. А именно, вектор линейной скорости представляет собой векторное произведение вектора угловой скорости и радиуса-вектора точки r:

. (1.19)

Таким образом, вектор угловой скорости направлен по оси вращения точки и определяется по правилу правой руки или буравчика.

Угловое ускорение — производная по времени от вектора угловой скорости ω (соответственно вторая производная по времени от угла поворота)

Выразим тангенциальное и нормальное ускорение через угловые скорости и ускорение. Используя связь (1.18), (1.12) и (1.13), получаем

at = β ·R, a =ω 2·R. 9 (1.20)

Таким образом, для полного ускорения имеем

. (1.21)

Величина β играет роль тангенциального ускорения: если β = 0.полное ускорение при вращении точки не равно нулю, a =R·ω 2 ≠ 0.

Законы Ньютона

Законы Ньютона образуют основу динамики — раздела механики, рассматривающего взаимодействие тел.

Первый закон Ньютона отражает свойство инерции, тел и часто называется законом инерции. Он утверждает, что всякое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока воздействие со стороны других тел не заставит его изменить это состояние. Ясно, во-первых, что этот закон выполняется только в инерциальных системах отсчета. Во-вторых, отсюда следует важное заключение, что, поскольку изменение состояния покоя или равномерного движения связано с наличием в системе ускорения, последнее, в свою очередь, возникает как результат воздействия других тел.

Это утверждение создает предпосылки для формулирования второго закона Ньютона.

Воздействие одного физического тела на другое характеризуется физической величиной, называемой силой. Сила, действующая на тело, сообщает ему ускорение. Величина полученного ускорения пропорциональна приложенной силе. Но разные тела под влиянием одинаковых сил приобретают разные ускорения. Данный опытный факт есть проявление уже упоминавшегося свойства инерции тела. Это свойство количественно характеризуется инертной массой тела — коэффициентом пропорциональности между приложенной к телу силой и полученным им ускорением.

Таким образом, второй закон Ньютона может быть записан в форме:

,

где фигурируют вновь введенные физические величины: вектор силы F и инертная масса тела m. В таком виде его можно сформулировать следующим образом: ускорение, приобретаемое телом, прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.

Грав. масса - характеризует способность тел притягиваться друг к другу, но так как вблизи поверхности Земли все тела испытывают земное притяжение, то ускорение любого тела равно g, поэтому мы инертную массу приравниваем к гравитационной и говорим об одной и той же массе.

 

А различают гравитационную и инертную массу, потому что упоминается масса в двух разных законах Ньютона ( F=ma и F = Gm1m2/r^2), где в первом случае учитываются инертные свойства массы, а во втором гравитационные свойства массы.

 

Третий закон Ньютона имеет дело со взаимодействующими, телами.

 

F12 = F21 m1a1=-m2a2 F1=-F2

 

 

Он утверждает, что силы, с которыми действуют друг на друга взаимодействующие тела, равны по величине и противоположны по направлению. Важно подчеркнуть, что силы, о которых идет речь, приложены к разным взаимодействующим друг с другом телам.

Законы Кепплера:

1. Каждая планета движется по эллипсу, в одном из фокусов которого находится Солнце.

2. Радиус-вектор планеты за равные промежутки времени описывает одинаковые планеты.

3. Квадраты периодов обращения планет вокруг солнца, относятся как кубы больших полуосей их орбит.

Работа. Вычисление работы.

Если на тело (материальную точку) действует постоянная сила , составляющая постоянный угол с перемещением тела , то работа этой силы определяется как произведение модулей силы и перемещения на косинус угла между векторами силы и перемещения, т. е. как скалярное произведение вектора силы на вектор перемещения: Единица работы в СИ - Дж - равна работе, совершаемой силой в 1 Н на перемещении 1 м вдоль направления действия силы.

Если на тело действует переменная сила, то, чтобы вычислить ее работу, нужно перемещение разбить на малые участки и найти сначала элементарную работу: а затем полную работу как предел суммы элементарных работ: Графически работа определяется по площади криволинейной трапеции. На оси абсцисс откладывают в определенном масштабе модули перемещения, на оси ординат проекции силы (также в соответствующем масштабе). Тогда площадь трапеции численно равна работе силы.

Работа сил тяжести:

Работа сил трения:

Кинетическая энергия

П ро тела, которые могут совершать работу, говорят, что они обладают энергией. Энергией называют скалярную физическую величину, показывающую, какую работу может совершить тело. Энергия равна той максимальной работе, которую тело может совершить в данных условиях. Механическая работа является мерой изменения энергии в различных процессах. Поэтому энергию и работу выражают в одних и тех же единицах (в СИ - в джоулях). В более общем смысле энергия - это единая мера разных форм движения материи, а также мера перехода движения материи из одной формы в другую. Для характеристики конкретных форм движения материи используют понятия о соответствующих видах энергии: механической, внутренней, электромагнитной и т. д. Механическая энергия является характеристикой движения и взаимодействия тел. Она зависит от скоростей и взаимного расположения тел.

Кинетическая энергия

Рассмотрим случай, когда тело массой m под действием постоянной силы (F=const) движется прямолинейно равноускоренно (а=const). Определим работу силы, приложенной к телу, при изменении модуля скорости этого тела от v1 до v2.

Как было отмечено в §17, работу постоянной силы вычисляют по формуле А=Fscosa. Так как в рассматриваемом нами случае направление силы F и перемещения s совпадают, то cosa=1 и А=Fs. По второму закону Ньютона F=ma. В § 2 было показано, что для прямолинейного равноускоренного движения справедлива формула

v2=vo2+2as.

Из этой формулы при vо=v1 и v=v2 Следует, что

s=(v22-v12)/2a.

Подставив значения F и s в формулу работы, получим

А=mv22/2-mv12/2 (3.12).

Из последней формулы видно, что работа силы, приложенной к телу, при изменении скорости этого тела равна разности двух значений некоторой величины mv22/2.

Выше отмечалось, что механическая работа есть мера изменения энергии. Следовательно, в правой части формулы (3.12) стоит разность двух значений энергии данного тела. Это значит, что величина mv22/2 представляет собой энергию, обусловленную движением тела. Эту энергию называют кинетической. Она обозначается Wк. Следовательно,

Wк=mv22/2. (3.13)

С учетом (3.13) формулу (3, 12) можно записать в виде

А=Wk2-Wk1=DWk, (3.14)

т.е. работа, совершаемая силой при изменении скорости тела, равна изменению кинетической энергии этого тела.

Когда направление силы совпадает с направлением перемещения тела, работа силы положительна (т.е. A> 0). Из формулы (3.14) видно, что в этом случае Wk2-Wk1> 0, т.е. Wk2> Wk1. Следовательно, когда сила совершает положительную работу, кинетическая энергия тела увеличивается. Когда же направление силы противоположно направлению перемещения, то A< 0 и Wk2-Wk1< 0, т.е. Wk2< Wk1. Следовательно, когда сила совершает отрицательную работу, кинетическая энергия тела уменьшается.

 

Потенциальная энергия

 


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 463; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.127 с.)
Главная | Случайная страница | Обратная связь