Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Парциальное давление. Относительная влажность. 67. Приборы для измерения относительной влажности воздуха.
Жизнь человека, животных и растений зависит от концентрации водяных паров (влажности) атмосферы, которая изменяется в широких пределах в зависимости от места и времени года. Как правило, водяной пар вокруг нас является ненасыщенным. Относительной влажностью воздуха называют отношение давления водяных паров к давлению насыщенных паров при той же температуре, выраженное в процентах. Одним из приборов для измерения влажность воздуха является психрометр, состоящий из двух одинаковых термометров, один из которых обёрнут влажной тканью.Когда влажность воздуха меньше 100%, вода из ткани будет испаряться, а термометр Б - охлаждаться, показывая меньшую температуру, чем А. И чем меньше будет влажность воздуха, тем больше будет разница, Dt между показаниями термометров А и Б. С помощью специальной психрометрической таблицы по этой разнице температур можно определить влажность воздуха. Парциальное давление - это давление определенного газа, входящего в состав газовой смеси, которое данный газ оказывал бы на стенки заключающей его ёмкости, если бы он один занимал весь объём смеси при температуре смеси. Парциальное давление не измеряется непосредственно, но оценивается, исходя из общего давления и состава смеси. Растворенные в воде или тканях тела газы также оказывают давление, потому что молекулы растворенного газа находятся в случайном движении и обладают кинетической энергией. Если растворенный в жидкости газ ударяется о поверхность, например клеточной мембраны, он оказывает парциальное давление так же, как и газ в газовой смеси. П. д. непосредственно измерить нельзя, его вычисляют исходя из общего давления и состава смеси. Факторы, определяющие величину парциального давления растворенного в жидкости газа. Парциальное давление газа в растворе определяется не только концентрацией, но и коэффициентом его растворимости, т.е. некоторые типы молекул, например двуокись углерода, физическим или химическим способом прикрепляются к молекулам воды, а другие — отталкиваются. Эти отношения называют законом Генри и выражают следующей формулой: Парциальное давление = Концентрация растворенного газа / Коэффициент растворимости. Поверхностное натяжение. Наиболее интересной особенностью жидкостей является наличие свободной поверхности. Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Поверхностные молекулы силами межмолекулярного притяжения втягиваются внутрь жидкости. Но все молекулы, в том числе и молекулы пограничного слоя, должны находиться в состоянии равновесия. Это равновесие достигается за счет некоторого уменьшения расстояния между молекулами поверхностного слоя и их ближайшими соседями внутри жидкости. Как видно из рис. 3.1.2, при уменьшении расстояния между молекулами возникают силы отталкивания. Если среднее расстояние между молекулами внутри жидкости равно r0, то молекулы поверхностного слоя упакованы несколько более плотно, а поэтому они обладают дополнительным запасом потенциальной энергии по сравнению с внутренними молекулами (см. рис. 3.1.2). Следует иметь ввиду, что вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь-нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу Δ Aвнеш, пропорциональную изменению Δ S площади поверхности: Δ Aвнеш = σ Δ S. Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу. В СИ коэффициент поверхностного натяжения измеряется в джоулях на метр квадратный (Дж/м2) или в ньютонах на метр (1 Н/м = 1 Дж/м2). Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения. Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости. Некоторые жидкости, как, например, мыльная вода, обладают способностью образовывать тонкие пленки. Всем хорошо известные мыльные пузыри имеют правильную сферическую форму – в этом тоже проявляется действие сил поверхностного натяжения. Если в мыльный раствор опустить проволочную рамку, одна из сторон которой подвижна, то вся она затянется пленкой жидкости. Смачивание. Всем известно, что, если поместить каплю жидкости на плоскую поверхность, она либо растечётся по ней, либо примет округлую форму. Причём размер и выпуклость (величина так называемого краевого угла) лежащей капли определяется тем, насколько хорошо она смачивает данную поверхность. Явление смачивания можно объяснить следующим образом. Если молекулы жидкости притягиваются друг к другу сильнее, чем к молекулам твёрдого тела, жидкость стремится собраться в капельку. Острый краевой угол возникает на смачиваемой (лиофильной) поверхности, тупой — на несмачиваемой (лиофобной). Острый краевой угол возникает на смачиваемой (лиофильной) поверхности, тупой — на несмачиваемой (лиофобной). Так ведёт себя ртуть на стекле, вода на парафине или на „жирной“ поверхности. Если же, наоборот, молекулы жидкости притягиваются друг к другу слабее, чем к молекулам твёрдого тела, жидкость „прижимается“ к поверхности, расплывается по ней. Это происходит с каплей ртути на цинковой пластине или с каплей воды на чистом стекле. В первом случае говорят, что жидкость не смачивает поверхность (краевой угол больше 90°), а во втором — смачивает её (краевой угол меньше 90°). Именно водоотталкивающая смазка помогает многим животным спасаться от излишнего намокания. Например, исследования морских животных и птиц — котиков, тюленей, пингвинов, гагар — показали, что их пуховые волосы и перья обладают гидрофобными свойствами, тогда как остевые волосы зверей и верхняя часть контурных перьев птиц хорошо смачиваются водой. В результате между телом животного и водой создаётся воздушная прослойка, играющая значительную роль в терморегуляции и теплоизоляции. Но смазка это ещё не всё. Немалую роль в явлении смачивания играет и структура поверхности. Шероховатый, бугристый или пористый рельеф может улучшить смачивание. Вспомним, к примеру, губки и махровые полотенца, прекрасно впитывающие воду. Но если поверхность изначально „боится“ воды, то развитый рельеф лишь усугубит ситуацию: капельки воды будут собираться на выступах и скатываться. Капиллярные явления. Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются. На рис. 3.5.6 изображена капиллярная трубка некоторого радиуса r, опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей Fн сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: Fт = Fн, где Fт = mg = ρ hπ r2g, Fн = σ 2π r cos θ. Отсюда следует: Рисунок 3.5.6. Подъем смачивающей жидкости в капилляре. При полном смачивании θ = 0, cos θ = 1. В этом случае При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр. Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде. |
Последнее изменение этой страницы: 2017-03-14; Просмотров: 607; Нарушение авторского права страницы