Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Виды деформации твердых тел.



Под внешним воздействием тела могут деформироваться.

Деформация — изменение формы и размеров тела. Причина деформации заключается в том, что различные части тела совершают неодинаковые перемещения при действии на тело внешних сил.

Деформации, которые полностью исчезают после прекращения действия силы, — упругие, которые не исчезают, — пластические.

1. При упругих деформациях происходит изменение расстояния между частицами тела. В недеформированном теле частицы находятся в определенных положениях равновесия (расстояния между выделенными частицами r0 — см. рис. 1, б), в которых силы отталкивания и притяжения, действующие со стороны других частиц, равны. При изменении расстояния между частицами одна из этих сил начинает превышать другую. В результате возникает равнодействующая этих сил, стремящаяся вернуть частицу в прежнее положение равновесия. Равнодействующая сил, действующих на все частицы деформированного тела, и есть наблюдаемая на практике сила упругости. Таким образом, следствием упругой деформации является возникновение упругих сил.

2. При пластической деформации, как показали наблюдения, смещения частиц в кристалле имеют совсем другой характер, чем при упругой. При пластической деформации кристалла происходит соскальзывание слоев кристалла относительно друг друга (рис. 1, а, б). Это можно увидеть с помощью микроскопа: гладкая поверхность кристаллического стержня после пластической деформации становится шероховатой. Соскальзывание происходит вдоль слоев, в которых больше всего атомов.

3. Деформация растяжения (сжатия). Линейная деформация возникает при приложении силы вдоль оси стержня, закрепленного с одного конца (рис. 3, а, б). При линейных деформациях слои тела остаются параллельными друг другу, но изменяются расстояния между ними. Линейную деформацию характеризуют абсолютным и относительным удлинением.

 

 

4. Деформация сдвига возникает под действием сил, приложенных к двум противоположным граням тела так, как показано на рисунке 4. Эти силы вызывают смещение слоев тела, параллельных направлению сил. Расстояние между слоями не изменяется. Любой прямоугольный параллелепипед, мысленно выделенный в теле, превращается в наклонный. Мерой деформации сдвига является угол сдвига γ — угол наклона вертикальных граней. Деформацию сдвига испытывают, например, заклепки и болты, соединяющие металлические конструкции. Сдвиг при больших углах приводит к разрушению тела — срезу. Срез происходит при работе ножниц, пилы и др.

5. Деформации изгиба подвергается балка, закрепленная с одного конца или закрепленная с двух концов, к середине которой подвешен груз (рис. 6). Деформация изгиба характеризуется стрелой прогиба h — смещением середины балки (или его конца). При изгибе выпуклые части тел испытывают растяжение, а вогнутые — сжатие, средние части тела практически не деформируются — нейтральный слой. Наличие среднего слоя практически не влияет на сопротивляемость тела изгибу, поэтому такие детали выгодно делать полыми (экономия материала и значительное снижение их массы). В современной технике широко используются полые балки, трубки. У человека кости тоже трубчатые.

 

6. Деформацию кручения можно наблюдать, если на стержень, один конец которого закреплен, действует пара сил (рис. 7), лежащих в плоскости, перпендикулярной оси стержня. При кручении отдельные слои тела остаются параллельными, но поворачиваются друг относительно друга на некоторый угол. Деформация кручения представляет собой неравномерный сдвиг. Деформации кручения возникают при завинчивании гаек, при работе валов машин.

Диаграмма растяжения.

Деформация растяжения (сжатия). Линейная деформация возникает при приложении силы вдоль оси стержня, закрепленного с одного конца (рис. 3, а, б). При линейных деформациях слои тела остаются параллельными друг другу, но изменяются расстояния между ними. Линейную деформацию характеризуют абсолютным и относительным удлинением.

Абсолютное удлинение Δ l = l - l0, где l — длина деформированного тела, l0 — длина тела в недеформированном состоянии.

Относительное удлинение — отношение абсолютного удлинения к длине недеформированного тела.

На практике растяжение испытывают тросы подъемных кранов, канатных дорог, буксирные тросы, струны музыкальных инструментов. Сжатию подвергаются колонны, стены и фундаменты зданий и т.д.

Расчеты прочности и жесткости конструкций и их деталей невозможно осуществить, если неизвестны механические свойства реальных материалов и их числовые характеристики, которые могут быть определены только экспериментальным путем.

 

Важность экспериментальных исследований объясняется еще и тем, что все решения сопротивления материалов являются приближенными. Поэтому их достоверность и пределы применимости могут быть установлены лишь экспериментально. Механические свойства материалов при различных видах деформаций (растяжении, сжатии, кручении и т. д.) изучаются путем испытания на специальных машинах брусьев простейшей формы, называемых образцами. Испытания проводятся обычно при комнатной температуре. В последнее время большое внимание уделяется исследованию свойств материалов при повышенных температурах. Наибольшей простотой и надежностью результатов отличаются испытания на растяжение. Испытательные машины снабжены динамометрами для замеров нагрузки на образец, а деформации образцов измеряются специальными приборами - тензометрами, устанавливаемыми непосредственно на образцах.

В процессе испытания изучается зависимость между нагрузками и вызванными ими удлинениями. Эту зависимость принято представлять в виде диаграмм растяжения. Как правило, испытательные машины оборудованы специальными приспособлениями для автоматической записи таких диаграмм.

При построении диаграмм растяжения по оси абсцисс откладываются удлинения Δ l рабочей части образца, а по оси ординат - соответствующие им значения растягивающей силы P

На Рис.4.4 представлена диаграмма растяжения образца из малоуглеродистой стали. Эту диаграмму можно разделить на три характерных участка.

Рис. 4.3. Образец для испытаний на растяжение

Рис. 4.4. Первичная диграмма растяжения пластичного материала с площадкой текучести

Рис. 4.5. Первичные диаграммы растяжения

На участке ОА, соответствующем стадии упругости образца, деформации материала подчиняются закону Гука.

На участке АВ рост нагрузки замедляется, а затем почти прекращается при одновременном росте удлинений. Явление значительного роста удлинений без заметного увеличения нагрузки называется текучестью, а горизонтальный (или почти горизонтальный) участок диаграммы растяжения называется площадкой текучести.

На стадии общей текучести полированная поверхность образца покрывается сеткой тонких линий (см. Рис. 4.4), называемых линиями сдвига, или линиями Чернова, по фамилии русского металлурга, впервые заметившего их. Эти линии являются следами плоскостей скольжения (сдвига) частиц материала друг относительно друга. Они наклонены к оси бруса под углом, близким к 45°, и практически совпадают с плоскостями действия максимальных касательных напряжений.

Многие материалы, например легированные стали, дюралюминий, обнаруживают пластические свойства, но площадки текучести не имеют. Характер диаграмм растяжения для дюралюминия и легированной стали представлен на Рис. 4.5.

Пластичность и хрупкость.

Пласти́ чность — способность материала без разрушения получать большие остаточные деформации. Свойство пластичности имеет решающее значение для таких технологических операций, как штамповка, вытяжка, волочение, гибка и др. Мерой пластичности является удлинение δ при разрыве. Чем больше δ, тем более пластичным считается материал. К числу весьма пластичных материалов относятся отожженная медь, алюминий, латунь, золото, малоуглеродистая сталь и др. Менее пластичными являются дюраль и бронза.

У пластичных материалов прочностные характеристики на растяжение и сжатие сопоставляют по пределу текучести. Принято считать, что σ т.р≈ σ т.с.

ХРУПКОСТЬ -свойство материала разрушаться при небольшой (преим. упругой) деформации под действием напряжений, ср. уровень к-рых ниже предела текучести.

Деление материалов на пластичные и хрупкие является условным не только потому, что между теми и другими не существует резкого перехода в значениях δ. В зависимости от условий испытания многие хрупкие материалы способны вести себя как пластичные, а пластичные — как хрупкие.

Очень большое влияние на проявление свойств пластичности и хрупкости оказывают скорость нагружения и температура. При быстром нагружении более резко проявляется свойство хрупкости, а при медленном — свойство пластичности. Например, хрупкое стекло способно при длительном воздействии нагрузки при нормальной температуре получать остаточные деформации. Пластичные же материалы, такие как малоуглеродистая сталь, под воздействием резкой ударной нагрузки проявляют хрупкие свойства.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 721; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь