Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Тормозное и характеристическое рентгеновское излучение



При торможении быстрых заряженных частиц атомами вещества анода возникает электромагнитное излучение, которое называют тормозным рентгеновским излучением.

При торможении большого количества электронов образуется сплошной (непрерывный) спектр рентгеновского излучения.

 
 


Ф

 

Рис. 44.

Спектр тормозного рентгеновского излучения

Короткое излучение возникает, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона:

; м, с =3.108 м/с.

Поток рентгеновского излучения (Ф):

Z – порядковый номер атома вещества анода;

k = – коэффициент пропорциональности;

I – сила тока в рентгеновской трубке;

U – напряжение в рентгеновской трубке.

Увеличивая напряжение на рентгеновской трубке, на фоне сплошного спектра появляется линейчатый спектр, который соответствует характеристическому рентгеновскому излучению (рис. 45).

Характеристическое рентгеновское излучение возникает из-за того, что некоторые ускоренные электроны проникают вглубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней, испуская рентгеновские кванты электромагнитного излучения:

 

Фλ

 
 

 


 
 

Рис. 45.

 

С увеличением заряда атома анода увеличивается частота излучаемого характеристического излучения. Такую закономерность называют законом Мозли:

,

где – частота спектральной линии характеристического рентгеновского излучения;

Z – атомный номер испускающего элемента; А и В – постоянные.

Характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра.

35. Взаимодействие рентгеновского излучения с веществом

Взаимодействия рентгеновского излучения с веществом определяются соотношением между энергией кванта рентгеновского излучения и работой ионизации атома (Аи).

Аи – это работа, необходимая для отрыва от атома электрона и превращения его в электрически заряженный ион.

Если , то возникает упругое рассеяние, частота и длина волны не изменяются (при столкновении с атомом рентгеновское излучение меняет только направление).

Если , , то энергия падающего кванта расходуется на ионизацию атома и на кинетическую энергию электрона (вследствие ионизации атома меняется структура молекул).

Если , , то вещество ионизируется и появляется вторичное рентгеновское излучение ( > , < ).

36. В результате взаимодействия рентгеновского излучение с веществом интенсивность рентгеновский лучей уменьшаетсяя по закону Бугера-Ламберта:

,

где – интенсивность падающего на

вещество рентгеновского излучения;

– интенсивность рентгеновского

Рис. 46 излучения, прошедшего через вещество;

– толщина вещества;

– линейный коэффициент ослабления рентгеновского излучения веществом.

 

, .

~ ,

где – плотность биотканей;

– длина волны рентгеновского излучения;

Z – порядковый номер атома вещества.

ZCa=20, ZP = 15, ZO = 8, ZH = 1.

Кости значительнее поглощают рентгеновские лучи, чем мягкие ткани, поэтому на рентгеновском снимке более светлые.

Если исследуемый орган и окружающие ткани одинаково ослабляют рентгеновское излучение, то применяют специальные контрастные вещества. Например, сульфат бария для желудка и кишечника.

37. Методы рентгеновской диагностики

1. Рентгенография – получение изображения внутренних органов на фотопленке.

               
   
   
 
 
   
фотопленка

 

 


2. Флюорография – это рентгенография на малоформатных пленках

 

 


Метод рентгеноструктурного анализа включает исследования характеристических спектров, на основе которых проводят качественный и количественный анализ структуры веществ. Этим методом Дж. Уотсон и Ф. Крик установили структуру ДНК и были удостоены Нобелевской премией.

Рентгеноструктурный анализ, основанный на дифракции рентгеновских лучей, используют для исследования лекарственных и биологически активных веществ. Перспективы использования этого метода в фармации связаны с идентификацией кристаллических лекарственных веществ, их полиморфных модификаций, с поиском новых комплексных координационных соединений для создания новых медицинских препаратов и биостимуляторов, с исследованием элементного и фазового состава неорганических и органических лекарственных веществ.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 469; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь