Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Вероятностное описание- особенность микромира.



спользование вероятностно-статистических методов в науке не противоречит концепции лапласовского детерминизма. На эмпирическом уровне объекты даны в единстве существенных и несущественных, случайных свойств, поэтому использование вероятностных представлений вполне обосновано. На теоретическом уровне использование вероятностей предполагало однозначную детерминированность тех индивидуальных явлений, которые в совокупности дают статистический закон. Статистические теории с этих позиций - это неподлинные теории; они могут быть практически очень полезны, но в познавательном плане они неполноценны, они дают лишь первое приближение к истине, и за каждой статистической теорией должна стоять теория, однозначно описывающая реальность. Фактически такую интерпретацию развивали Эйнштейн, Планк, Шредингер и их сторонники, когда утверждали, что принципиально вероятностный характер квантовой механики говорит о ее неполноте как физической теории

 

Билет 8.

  1. Противоречия электродинамики и принципа относительности Галилея.

Электродинамика не подчиняется принципу относительности Галилея. (подразумевается абсолютность времени во всех СО, так же происходит преобразование координат и времени при переходе из одной ИСО в другую).

Теория относительности разрешает противоречия.

Постулаты Эйнштейна.

1)все физические законы одинаковы во всех СО.

2)Скорость света в вакууме имеет одно и то же значение в любых СО.

2 электрона рассматриваются в 2-х разных системах координат. 2 заряда взаимодействуют силами кулона. – электромагнитными.

Если мы переместимся в другую СО, которая двигается, то увидим движущиеся э-ны, то есть ток. Движущиеся заряды создают магнитное поле, магн. Поле действует на 2ой движущийся заряд (сила Лоренца). à имеется не только электростатическое, но и магнитное взаимодействие. По Кулону- заряды взаимно отталкиваются. Но они движ. В одном направлении, сдвигаются.

 

  1. Тепловое излучение. Ультрафиолетовая катастрофа.

— электромагнитное излучение со сплошным спектром, испускаемое веществом и возникающее за счёт его внутренней энергии (в отличие, например, от люминесценции, возникающей за счёт внешних источников энергии). В физике для корректного расчёта теплового излучения принята модель абсолютно чёрного тела

Тепловое излучение — один из трёх элементарных видов переноса тепла (теплопроводность, конвекция, излучение), которое осуществляется при помощи электромагнитных волн.

Г. Кирхгоф доказал, что отношение испускательной и поглощательной способностей не зависит от природы тела и является для всех тел одной и той же функцией частоты (длины волны) и температуры:

Сами величины rω T и aω T могут сильно меняться при переходе от одного тела к другому, но их отношение оказывается одинаковым для всех тел.

УФ катастрофа- — физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Так как это не согласуется с экспериментальным наблюдением, в конце 19 века возникали трудности в описании фотометрических характеристик тел.

 

Билет 9.

1. Преобразования Лоренца.

преобразования, которым подвергаются пространственно-временные координаты (x, y, z, t) каждого события при переходе от одной инерциальной системы отсчета (ИСО) к другой. в случае, когда , преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Преобразования Лоренца сохраняют инвариантным интервал для любой пары событий (точек пространства-времени) — то есть любой пары точек пространства — времени. преобразования Лоренца, смешивающие — в отличие от преобразований Галилея — пространственные координаты и время, исторически стали основой для формирования концепции единого пространства-времени.

 

Фотоэффект.

Фотоэффе́ кт — это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

 

В 1839 году Александр Беккерель наблюдал явление фотоэффекта в электролите. В 1873 году Виллоби Смит обнаружил, что селен является фотопроводящим. Затем эффект изучался в 1887 году Генрихом Герцем.

формула Эйнштейна для фотоэффекта:

где Aout — т. н. работа выхода (минимальная энергия, необходимая для удаления электрона из вещества), — кинетическая энергия вылетающего электрона, ν — частота падающего фотона с энергией hν, h — постоянная Планка. Суть формулы заключается в том, что энергия фотона расходуется на ионизацию атома вещества, на работу, которую необходимо совершить для того, чтобы «вырвать» электрон, и остаток переходит в кинетическую энергию электрона.

Внешним фотоэффектом ( фотоэлектронной эмиссией ) называется испускание электронов веществом под действием электромагнитных излучений. Электроны, вылетающие из вещества при внешнем фотоэффекте, называются фотоэлектронами, а электрический ток, образуемый ими при упорядоченном движении во внешнем электрическом поле, называется фототоком.

Законы внешнего фотоэффекта

  1. Закон Столетова: при неизменном спектральном составе электромагнитных излучений, падающих на фотокатод, фототок насыщения пропорционален энергетической освещенности катода (иначе: число фотоэлектронов, выбиваемых из катода за 1 с, прямо пропорционально интенсивности излучения):
    и
  2. Для данного фотокатода максимальная начальная скорость фотоэлектронов зависит от частоты распространяющихся электромагнитных колебаний и не зависит от его интенсивности.
  3. Для каждого фотокатода существует красная граница фотоэффекта, то есть минимальная частота электромагнитного излучения ν 0 при которой фотоэффект ещё возможен

Внутренним фотоэффектом называется перераспределение электронов по энергетическим состояниям в твердых и жидких полупроводниках и диэлектриках, происходящее под действием излучений. Он проявляется в изменении концентрации носителей зарядов в среде и приводит к возникновению фотопроводимости или вентильного фотоэффекта.

Вентильный фотоэффект или фотоэффект в запирающем слое — явление, при котором фотоэлектроны покидают пределы тела, переходя через поверхность раздела в другое твёрдое тело (полупроводник) или жидкость (электролит).

Фотовольтаический эффект — возникновение электродвижущей силы под действием электромагнитного излучения.

 

Билет 10.

  1. Лоренцово сокращение длины.

Рассмотрев движение светового импульса вдоль оси x (а не вдоль y, как было в п.1), и потребовав (на основании постулата одинаковости скорости света во всех инерциальных системах отсчёта), чтобы расстояние между двумя точками было всегда равно времени, за которое свет идёт от одной точки до другой, делённому на (константу) скорость света, можно получить фактор сокращения расстояний вдоль оси x, а учитывая, что смещение начала отсчёта − Vt очевидно, можно получить и преобразование для x:

.

Однако ещё проще теперь понять, что x' выражается именно таким образом, заметив, что в плоскости xct график движения импульса света должен быть прямой, наклонённой под 45° (из-за того, что скорость света — всегда c), а значит и масштаб по x и по ct должен быть одинаковым, а выражения в системе единиц c = 1 — симметричными.

  • Таким образом достаточно наглядно получаются преобразования Лоренца при коллинеарных пространственных осях. Конечно, возможен и обратный порядок рассуждений: можно сначала получить преобразования Лоренца каким-то более абстрактным способом, например — одним из упомянутых в статье выше, а потом получить все эффекты, разобранные в этапах данного наглядного доказательства, в качестве простого формального следствия преобразований Лоренца.

Если одна СО движется относительно другой со скоростью v, близкой к скорости света, то интервал меняется.

 

  1. Термоядерные реакции.

-разновидность ядерной реакции, при которой легкие атомные ядра объединяются в более тяжелые ядра. Реакция обычно протекает в недрах Солнца и звезд, так как необходима высокая температура. Для проведения ТР в земных условиях необходимы легкие ядра, где малы силы кулоновского отталкивания, и высокая температура около 10 000 градусов.

Проблемы: 1. плазма лижет стенки сосудов, выбивая тяжелые атомы, которые ее охлаждают. 2. Ионы нужно разогреть до 1 млн градусов цельсия. Сжимать и разжимать плазму. 3.Изотопы водорода проникают в стенки сосудов, делают их хрупкими.

чтобы вступить в реакцию, ядра должны преодолеть потенциальный барьер. Например, для реакции дейтерий-тритий величина этого барьера составляет примерно 0, 1 МэВ.

 

 

Билет 11.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 306; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь