Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Строение атома. Опыты Резерфорда.



Представления о строении.

  • Кусочки материи. Демокрит полагал, что свойства того или иного вещества определяются формой, массой, и пр. характеристиками образующих его атомов. Так, скажем, у огня атомы остры, поэтому огонь способен обжигать, у твёрдых тел они шероховаты, поэтому накрепко сцепляются друг с другом, у воды — гладки, поэтому она способна течь. Даже душа человека, согласно Демокриту, состоит из атомов.
  • Модель атома Томсона (модель «Пудинг с изюмом», . Plum pudding model). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Эта модель не объясняла дискретный характер излучения атома и его устойчивость. Была окончательно опровегнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.
  • Ранняя планетарная модель атома Нагаоки. В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбиталям вращались электроны, объединённые в кольца. Модель оказалось ошибочной, но некоторые важные её положения вошли в модель Резерфорда.
  • Планетарная модель атома Бора-Резерфорда. В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а следовательно, терять энергию. Расчеты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Общепринятой является модель атома, являющаяся развитием планетарной модели. Считается, что ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).

Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется количеством протонов, в то время как количество нейтронов на химические свойства практически не влияет; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).

Массу атома принято измерять в атомных единицах массы, равных 112 от массы атома стабильного изотопа углерода 12C.

Первый постулат Бора (постулат стационарных состояний): в атоме существуют некоторые стационарные состояния, не изменяющиеся во времени без внешних воздействий. В этих состояниях атом не излучает электромагнитных волн.

Второй постулат Бора (правило частот): при переходе атома из одного стационарного состояния в другое им испускается или поглощается один квант энергии.

 

Билет 14.

1. Давление света.

— давление, которое оказывает световое (и вообще электромагнитное) излучение, падающее на поверхность тела. Впервые гипотеза о существовании светового давления была высказана И. Кеплером в XVII веке для объяснения поведения хвостов комет при пролете их вблизи Солнца. В 1873 г. Максвелл дал теорию давления света в рамках своей классической электродинамики.

свет обладает корпускулярно-волновым дуализмом, то есть проявляет свойства частиц (фотонов) и свойства волн (электромагнитного излучения).

Если рассматривать свет как поток фотонов, то, согласно принципам классической механики, частицы при ударе о тело должны передавать ему импульс, другими словами — оказывать давление. Такое давление иногда называют радиационным давлением.

Для вычисления давления света можно воспользоваться следующей формулой:

где — количество лучистой энергии, падающей нормально на 1 м² поверхности за 1 с; — скорость света, — коэффициент отражения.

Если свет падает под углом к нормали, то давление можно выразить формулой:

где — объёмная плотность энергии излучения, — коэффициент отражения, — единичный вектор направления падающего пучка, — единичный вектор направления отражённого пучка.

Например, тангенциальная составляющая силы давления света на единичную площадку будет равна:

Нормальная составляющая силы давления света на единичную площадку будет равна:

Отношение нормальной и тангенциальной составляющих равно:

Применение: солнечный парус и разделение газов.

Уравнение Шредингера.

— уравнение, связывающее пространственно-временное распределение с помощью представлений о волновой функции

уравнение для энергии электрона было записано Шредингером в таком виде:

Hy = Ey (12)

В таком случае те функции, которые удовлетворяют этому уравнению, называются собственными функциями а значения энергии собственными значениями оператора.

Уравнение Шредингера - это уравнение в частных производных, и оно имеет бесчисленное множество решений. Надо определить, какие из них нам подходят, а для этого надо выяснить, каков физический смысл функции y и какой она должна быть.

1. Функция y физического смысла не имеет вообще. Физический смысл имеет квадрат ее модуля , который называется амплитудой вероятности или вероятностью нахождения электрона в определенной точке. Но, поскольку электрон размазан, а точка в атоме при его размерах тоже не очень конкретное понятие, то для нахождения вероятности где-то встретить электрон, надо его искать в определенной области пространства dv, т. е. вероятность нахождения электрона в некоем микрообъеме на расстоянии r от ядра определяется величиной dv. При этом функция может быть положительной, отрицательной, действительной или мнимой мнимой.

2. Уравнение Шредингера в принципе имеет решение только для сферически симметричной задачи, т.е. один электрон в поле одного ядра. Нам надо отобрать решения, которые имеют физический смысл, т.е. определить “граничные условия” для y. А именно: y должна быть непрерывной, монотонной, убывающей с ростом расстояния от ядра и образовывать стоячую волну. Такое решение существует, но полученные функции будут зависеть от нескольких параметров: n, l, m и иметь вид:

Очевидно, что мы получили функцию, часть которой зависит только от r, а вторая часть - только от углов (x/r, y/r, z/r - косинусы углов радиуса-вектора).

Что означают все эти члены в выражении для y?

1. N. Нормировочный множитель. Вводится для того, чтобы вероятность нахождения электрона где-то в пространстве была равна 1. Математически это выражается так

2. n, l, m - квантовые числа

n - главное квантовое число, определяет энергию электрона и расстояние его наиболее вероятного нахождения вблизи ядра.

n = 1, 2, 3, …¥

l - орбитальное квантовое число, определяет момент количества движения электрона m vr - вектор.

 

Билет 17.


Поделиться:



Последнее изменение этой страницы: 2017-03-14; Просмотров: 394; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь