Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Скорости и ускорения точек твердого тела, вращающегося вокруг неподвижного центра.



 

Формулу угловой скорости можно получить с помощью матрицы α . Пусть точка М определена в неподвижной системе вектором , а в подвижной вектором , тогда можно записать или

, (2.26)

где . Продифференцируем (2.26) по времени

. (2.27)

Второе слагаемое равно нулю, так как в подвижной системе вектор- столбец постоянен. Перепишем (2.27) в таком виде

Матрицу назовём матрицей угловой скорости. Докажем, что эта матрица кососимметричная. Условие кососимметричности матрицы есть, . Заметим

а также

откуда получаем .

Известно, что для кососимметричной матрицы существует сопряженный вектор

такой что , где - вектор столбец координат точек тела. Мы получили ту же формулу (2.24).

Перейдём к рассмотрению ускорений точек тела вращающегося вокруг неподвижной точки. По определению ускорение точки есть производная от вектора скорости

,

Но по (2.25) имеем и, учитывая что , получим

(2.28)

Первое слагаемое - вращательное ускорение, которое не направлено в общем случае по вектору скорости, второе слагаемое - есть осестремительное ускорение, направленное всегда к мгновенной оси вращения и численно равно .

Глава 6.

 

Определение положения твердого тела в пространстве.

Чтобы определить положение твердого тела в пространстве, зададим прежде всего положение какой-нибудь одной его «ос­новной точки», или полюса О' при помощи вектор-радиуса этой точки (рис.40) или ее координат ( ). Тело мо­жет вращаться около фикси­рованного положения полюса О', поэтому для определения положения тела в простран­стве нужно еще задать три эй­леровых угла тела по отноше­нию к системе , оси кото­рой параллельны неподвижым осям Охуz, а начало на­ходится в полюсе О. Так, твердое тело в про­странстве имеет шесть степе­ней свободы, характеризуемых величинами

Имея заданными эти шесть величин, легко составить и урав­нения движения любой точки М тела. Из основного равенства , проектированием его на оси неподвижной системы координат получим

(2.29)

Рис 40

Здесь - направляющие косинусы- (обозначения их приняты со­гласно таблице, помещенной в предыдущем параграфе) могут быть выражены через эйлеровы углы; величины х', у', z' — заданные постоянные, оп­ределяющие выбор точки, движение которой разыскивается, - заданные функции времени. Таким образом, уравнения (2.29) дают уравнения движения точек тела.

Всякое перемещение тела в пространстве может быть, осу­ществлено поступательным перемещением вместе с полюсом и одним поворотом вокруг оси, проходящей через полюс.

В дополнение к вышесказанному добавим, что вектор поворота тела не зависит от выбора полюса, т. е. при перемене по­люса будет меняться только поступательное перемещение, а ось, угол и направление поворота не будут изменяться.

 

Скорости и ускорения в общем случае движения

Твердого тела.

Перемещение любой точки тела, как было показано, скла­дывается из поступательного перемещения, равного перемеще­нию полюса, и вращательного вокруг оси, проходящей через полюс. Если рассматривать только бесконечно малые переме­щения тела, соответствующие переходу тела из данного поло­жения в бесконечно близкое, то с точностью до бесконечно малых высших порядков можно представить вращательное перемещение как векторное произведение вектора бесконечно малого поворота на вектор-радиус рассматриваемой точки по отношению к полюсу.

.

Так как , то , где -скорость полюса, разделив полученное выражение на , получим

. (2.30)

Эта основная формула кинематики твердого тела дает закон распределения скоростей в твердом теле в общем случае его движения.

Слагаемое определяет поступательную составляющую скорости, равную скорости по­люса, второе слагаемое представляет собой вращатель­ную составляющую скорости тела вокруг полюса О'.

Зная движение полюса и закон вращения тела вокруг по­люса, т. е. имея уравнения движения, можем по формуле (2.30) определить скорость любой точки тела. Проекции скорости на оси получим по общим правилам проектирования векторных выражений. Выпишем проекции скорости на неподвижные оси:

Здесь Переходим к рассмотрению вопроса о распределении уско­рений. Для этого продифференцируем левую и правую части (49) по времени; получим

или

(2.31)

Первое слагаемое определяет поступательное ускорение, равное ускорению полюса, а второе и третье: и - вращательную и центростремительную состав­ляющие ускорения вращения тела вокруг полюса. Таким образом, полу­чаем: ускорение точки твер­дого тела в общем случае его движения склады­вается из трех состав­ляющих: 1) поступатель­ного ускорения, одинакового в данный момент для всех точек тела и равного ускорению полюса; 2) вращательного ускорения вокруг полюса ( направлено по мгновенной оси и характеризует изменение угловой скорости по величине, - характеризует изменение угловой скорости по направлению и оно перпендикулярно мгновенной оси), 3) осе­стремительного ускорения, равного по величине произведению квадрата угловой скорости на кратчайшее расстояние от точки до мгновенной оси вращения.

 

Глава 8.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 529; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь