Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Потенциальная энергия деформации



При простом растяжении (сжатии) потенциальная энергия U= .

Удельная потенциальная энергия — количество потенциальной энергии, накапливаемое в единице объема: u = ; . В общем случае объемного напряженного состояния, когда действуют три главных напряжения:

или

Полная энергия деформации, накапливаемая в единице объема, может рассматриваться как состоящая из двух частей: 1) энергии uo, накапливаемой за счет изменения объема (т.е. одинакового изменения всех размеров кубика без изменения кубической формы) и 2) энергии uф, связанной с изменением формы кубика (т.е. энергии, расходуемой на превращение кубика в параллелепипед). u = uо + uф.

;

тензор напряжений (матрица третьего порядка).

При переходе к главным напряжениям тензор напряжений получает вид:

. При повороте системы координат коэффициенты тензора меняются, сам тензор остается постоянным.

Три инварианта напряженного состояния:

 

Аналогичные зависимости возникают при рассмотрении деформированного состояния в точке. Сопоставление зависимостей напряженного и деформированного плоского состояния (аналогия):

ea — относительная деформация, ga — угол сдвига.

Та же аналогия сохраняется и для объемного состояния. Поэтому имеем инварианты деформированного состояния:

J1= ex + ey + ez;

J2= exey +eyez + ezex g2xy g2yz g2zx;

тензор деформаций.

ex, ey, ez, gxy, gyz, gzx — компоненты деформированного состояния.

Для осей, совпадающих с направлениями главных деформаций e1, e2, e3, тензор деформаций принимает вид: .

 

 

Теории прочности

В общем случае опасное напряженное состояние элемента конструкции зависит от соотношения между тремя главными напряжениями (s1, s2, s3). Т.е., строго говоря, для каждого соотношения нужно экспериментально определять величину предельного напряжения, что нереально. Поэтому были приняты такие методы расчета прочности, которые позволяли бы оценить степень опасности любого напряженного состояния по напряжению растяжения – сжатия. Они называются теориями прочности (теории предельных напряженных состояний).

1-ая теория прочности (теория наибольших нормальных напряжений): причиной наступления предельного напряженного состояния являются наибольшие нормальные напряжения. smax= s1£ [s]. Главный недостаток: не учитываются два других главных напряжения. Подтверждается опытом только при растяжении весьма хрупких материалов (стекло, гипс). В настоящее время практически не применяется.

2-ая теория прочности (теория наибольших относительных деформаций): причиной наступления предельного напряженного состояния являются наибольшие удлинения. emax= e1£ [e]. Учитывая, что e1= , m — коэффициент Пуассона, получаем условие прочности sэквII= s1 — m(s2 + s3)£ [s]. sэкв — эквивалентное (расчетное) напряжение. В настоящее время теория используется редко, только для хрупких материалов (бетон, камень).

3-я теория прочности (теория наибольших касательных напряжений): причиной наступления предельного напряженного состояния являются наибольшие касательные напряжения tmax £ [t], tmax= , условие прочности: sэквIII= s1 — s3£ [s]. Основной недостаток – не учитывает влияние s2.

При плоском напряженном состоянии: sэквIII= £ [s]. При sy=0 получаем Широко используется для пластичных материалов.

4-я теория прочности (энергетическая теория): причиной наступления предельного напряженного состояния являются величина удельной потенциальной энергии изменения формы. uф£ [uф]. .

Учитывает, все три главных напряжения. При плоском напряженном состоянии: . При sy=0,

Широко используется для пластичных материалов.

 

Раздел 4. Сдвиг. Кручение

Чистый сдвиг

Чистый сдвиг — напряженное состояние, при котором по взаимно перпендикулярным площадкам (граням) элемента возникают только касательные напряжения. Касательные напряжения , где Q — сила, действующая вдоль грани, F — площадь грани. Площадки, по которым действуют только касательные напряжения, называются площадками чистого сдвига. Касательные напряжения на них — наибольшие. Чистый сдвиг можно представить как одновременное сжатие и растяжение, происходящее по двум взаимно перпендикулярным направлениям. Т.е. это частный случай плоского напряженного состояния, при котором главные напряжения: s1= — s3 = t; s2= 0. Главные площадки составляют с площадками чистого сдвига угол 45о.

При деформации элемента, ограниченного площадками чистого сдвига, квадрат превращается в ромб. d — абсолютный сдвиг,

g » относительный сдвиг или угол сдвига.

Закон Гука при сдвиге: g = t/G или t = G× g.

G — модуль сдвига или модуль упругости второго рода [МПа] — постоянная материала, характеризующая способность сопротивляться деформациям при сдвиге. (Е — модуль упругости, m— коэффициент Пуассона).

Потенциальная энергия при сдвиге: .

Удельная потенциальная энергия деформации при сдвиге: ,

где V=а× F — объем элемента. Учитывая закон Гука, .

Вся потенциальная энергия при чистом сдвиге расходуется только на изменение формы, изменение объема при деформации сдвига равно нулю.

Кручение

Такой вид деформации, при котором в поперечных сечениях возникает только одни крутящие моменты — Мк. Знак крутящего момента Мк удобно определять по направлению внешнего момента. Если при взгляде со стороны сечения внешний момент направлен против час.стр., то Мк> 0 (встречается и обратное правило). При кручении происходит поворот одного сечения относительно другого на угол закручивания -j. При кручении круглого бруса (вала) возникает напряженное состояние чистого сдвига (нормальные напряжения отсутствуют), возникают только касательные напряжения. Принимается, что сечения плоские до закручивания остаются плоскими и после закручивания — закон плоских сечений. Касательные напряжения в точках сечения изменяются пропорционально расстоянию точек от оси.

 

 

Из закона Гука при сдвиге: t=gG, G — модуль сдвига, , — полярный момент сопротивления круглого сечения. Касательные напряжения в центре равны нулю, чем дальше от центра, тем они больше. Угол закручивания , GJpжесткость сечения при кручении. относительный угол закручивания. Потенциальная энергия при кручении: . Условие прочности: , [t] = , для пластичного материала за tпред принимается предел текучести при сдвиге tт, для хрупкого материала – tв – предел прочности, [n] – коэффициент запаса прочности. Условие жесткости при кручении: qmax£ [q] – допустимый угол закручивания.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 825; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь