Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Предел и непрерывность функции двух переменных



Основные понятия

Функции двух переменных

 

Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести понятие функции нескольких переменных.

Например, площадь прямоугольника есть функция двух независимо друг от друга изменяющихся переменных – длин сторон прямоугольника и , которая выражается формулой:

.

Работа постоянного электрического тока является функцией от разности потенциалов на концах участка, силы тока и времени , которая выражается формулой

.

Например, функция

есть функция от четырех переменных и .

 

Остановимся на случае двух переменных, которые будем обозначать и .

Каждой паре значений и соответствует точка на плоскости , координатами которой они служат. Рассмотрим некоторое множество точек на плоскости и обозначим его через , т.е. . Надо отметить, что переменные и не зависимы друг от друга.

Определение 1.1. Если каждой паре из некоторой области их изменения , поставлено в соответствие определенное значение величины , то говорят, что есть функция двух независимых переменных и . Записывается

.

 

При этом и называются независимыми переменными (аргументами), а - зависимой переменной (функцией).

 

Определение 1.2. Множество пар значений и , при которых определена функция , называется областью определения функции, обозначается .

Если каждую пару значений и можно изобразить точкой на плоскости , то область определения функции изобразиться в виде некоторой совокупности точек этой плоскости. В частности, область определения может быть вся плоскость или ее часть, ограниченная некоторыми линиями.

Определение 1.3. Линию, ограничивающую область, называют границей области. Точки области, не лежащие на границе, называются внутренними. Область, состоящая из одних внутренних точек, называется открытой. Область с присоединенной к ней границей называется замкнутой.

Пример 1.1. Найти область определения функции

.

Решение. Областью определения данной функции является множество точек плоскости , которые удовлетворяют решению системе неравенств

.

,

Определение функции двух переменных легко обобщить на случай трех или более переменных.

Определение 1.4. Если каждой рассматриваемой совокупности значений переменных соответствует определенной значение переменной , то называют функцией независимых переменных и записывают

.

 

Так же как и для функции двух переменных, можно говорить об области определения функции трех, четырех и более переменных. Так, например, для функции трех переменных областью определения является некоторая совокупность троек чисел , которые представляют совокупность точек пространства. Область определения функции четырех и более числа переменных уже не допускает простого геометрического истолкования.

Функция двух переменных, как и функция одной переменной, может быть задана разными способами: таблицей, аналитически, графически.

Рассмотрим функцию , определенную в области на плоскости , и систему прямоугольных декартовых координат . В каждой точке

Определение 1.5. Геометрическое место точек , координаты которых удовлетворяют уравнению , называется графиком функции двух переменных.

Из курса аналитической геометрии известно, что уравнение в пространстве определяет некоторую поверхность. Таким образом, графиком функции двух

 

Частные производные ФНП

 

Рассмотрим линию пересечения поверхности с плоскостью , параллельной плоскости . Так как в этой плоскости сохраняет постоянное значение, то вдоль кривой будет меняться только в зависимости от изменения . Дадим независимой переменной приращение , тогда получит приращение, которое называется частным приращением по и обозначают через (на рисунке отрезок ), так что

.

Аналогично, если сохраняет постоянное значение, а получает приращение

параллельной плоскости .

Наконец, придав аргументу приращение , а аргументу приращение , получим для новое приращение , которое называется полным приращением функции и определяется формулой

.

На рисунке изображено отрезком .

Надо отметить, что, вообще говоря, полное приращение не равно сумме частных приращений, т.е. .

 

Определение 2.1. Частной производной по от функции называется предел отношения частного приращения по к приращению при стремлении к нулю. Обозначается: . Тогда

. (2.1)

Определение 2.2. Частной производной по от функции называется предел отношения частного приращения по к приращению при стремлении к нулю. Обозначается: . Тогда

. (2.2)

 

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находят по формулам и правилам вычисления производных функции одной переменной (при этом соответственно или считаются постоянной величиной).

Геометрический смысл частных производных: частная производная численно равна тангенсу угла наклона a касательной к сечению поверхности плоскостью ;

частная производная численно равна тангенсу угла наклона b касательной к сечению поверхности плоскостью .

 

Пример 2.1. Для данной функции требуется найти частные производные и . Найти значения частных производных в точке :

.

Решение. Находим частные производные в общем виде:

, .

Находим значения частных производных в точке :

, .

,

Пример 2.2. Найти частные производные , , , для следующей функции:

.

Решение.

.

,

 

В замкнутой области

 

Пусть функция определена и непрерывна в ограниченной замкнутой области . Тогда она достигает в некоторых точках своего наибольшего и наименьшего значений (так называемый глобальный экстремум). Эти значения достигаются функцией в точках, расположенных внутри области , или в точках, лежащих на границе области.

 

В замкнутой области

 

1. Найти все критические точки функции, принадлежащие , и вычислить значения функции в них.

2. Найти наибольшее и наименьшее значения функции на границах области.

3. Сравнить все найденные значения функции и выбрать из них наибольшее и наименьшее .

 

Пример 3.3. Найти наибольшее и наименьшее значения функции в замкнутой области , ограниченной линиями: .

Решение. 1) Строим замкнутую область , ограниченную линиями: .

Û , , , .

Таким образом, получаем четыре стационарные точки, ни одна из которых не принадлежит области .

3) Исследуем функцию на границе области, состоящей из участков и .

а) на границу : .

Тогда получаем функцию от одной переменной : . Находим критические точки: .

Þ .

Далее .

 

б) на границу : .

Тогда получаем функцию от одной переменной : . Находим критические точки: .

Þ и .

Далее .

 

в) на границу : .

Тогда получаем функцию от одной переменной : . Находим критические точки: .

Þ .

Далее .

 

г) на границу : .

Тогда получаем функцию от одной переменной :

.

Находим критические точки: .

Þ . Значит, на границе критических точек нет.

 

4) Находим значения функции в вершинах области: . Выше были найдены значения функции и , что соответствует значениям функции в точках и . Поэтому находим значения функции в точках и :

;

.

Из всех полученных значений функции выбираем наибольшее и наименьшее:

; .

,

 

4. ОСНОВНЫЕ ПОНЯТИЯ СКАЛЯРНОГО ПОЛЯ

 

Скалярное поле

 

Предположим, что в каждой точке некоторой области задано значение скалярной физической величины , т.е. такой величины, которая полностью характеризуется своим числовым значением. Например, это может быть температура точек неравномерно нагретого тела, плотность распределения электрических зарядов в изолированном наэлектризованном теле, потенциал электрического поля и т.д. При этом называется скалярной функцией точки, записывается это так . Область , в которой определена функция , может совпадать со всем пространством, а может являться некоторой его частью.

Определение 4.1. Если в области задана скалярная функция точки , то говорят, что в этой области задано скалярное поле.

 

Будем считать, что скалярное поле стационарное, т.е. величина не зависит от времени .

Если физическая величина векторная, то ей будет соответствовать векторное поле, например, силовое поле, электрическое поле напряженности, магнитное поле и др.

 

Если скалярное поле отнесено к системе координат , то задание точки равносильно заданию ее координат , и тогда функция можно записать в обычном виде функции трех переменных: .

Рассмотрим точки области , в которых функция имеет постоянное значение , т.е. . Совокупность этих точек образует некоторую поверхность. Если возьмем другое значение , то получим другую поверхность. Эти поверхности называются поверхностями уровня.

Определение 4.2. Поверхностью уровня скалярного поля называется геометрическое место точек, в которых функция принимает постоянное значение, т.е.

.

 

В курсе физики при рассмотрении поля потенциала поверхности уровня называют обычно эквипотенциальными поверхностями (т.е. поверхности равного потенциала).

Если скалярное поле плоское, т.е. изучается распределение значений величины в какой-то плоской области, то функция зависит от двух переменных, например, и . Линиями уровня этого поля будут линии уровня функции , т.е. .

В прикладных науках часто употребляются линии уровня для представления изучаемой функции двух независимых переменных. Так, например, рассматривая высоту точки местности над уровнем моря как функцию двух переменных – координат точки, на карты наносят линии уровня этой функции. Они называются в топологии горизонталями. С помощью сети горизонталей удобно следить за изменением высоты местности. В метеорологии пользуются сетями изотерм и изобар (линий одинаковых средних температур и линий равных средних давлений), являющимися линиями уровня температуры и давления как функции координат точки местности.

 

Пример 4.1. Построить в плоскости линии уровня функции .

 

Производная по направлению

 

Важной характеристикой скалярного поля является скорость изменения поля в заданном направлении.

Пусть задано скалярное поле, т.е. задана функция , и точка . Будем предполагать, что функция непрерывна и имеет непрерывные производные по своим аргументам в области .

Проведем из точки вектор , направляющие косинусы которого . На векторе , на расстоянии от его начала, рассмотрим точку . Тогда .

.

Учитывая, что , то полученное равенство будет иметь следующий вид:

.

Перейдем к пределу при .

Определение 4.3. Предел отношения при называется производной от функции в точке по направлению вектора и обозначается , т.е.

.

 

Итак, если функция дифференцируемая, то производная от функции в точке по направлению вектора находится по следующей формуле:

, (4.1)

где - направляющие косинусы вектора .

 

В случае функции двух переменных , т.е. когда поле плоское, формула (4.1) примет следующий вид:

, (4.2)

где .

 

Подобно тому, как частные производные характеризуют скорость изменения функции в направлении осей координат, так и производная по направлению будет являться скоростью изменения функции в точке по направлению вектора .

 

Градиент

 

В каждой точке области , в которой задана функция , определим вектор, проекциями которого на оси координат являются значения частных производных в выбранной точке . Назовем этот вектор градиентом функции и обозначим его символами или (набла-оператор, записываемый в виде «вектора» с компонентами ).

Определение 4.4. Градиентом функции в точке называется вектор, проекции которого служат значения частных производных этой функции, т.е.

. (4.3)

 

Подчеркнем, что проекции градиента зависят от выбора точки и изменяются с изменением координат этой точки. Таким образом, каждой точке скалярного поля, определяемого функцией , соответствует определенный вектор – градиент этой функции. Отметим, что градиент линейной функции есть постоянный вектор .

Учитывая то, что скалярное произведение равно модулю одного вектора умноженному на проекцию другого вектора на направление первого, то можно еще сказать, что: производная функции по данному направлению равна проекции градиента функции на направление дифференцирования, т.е.

,

где j - угол между и направлением .

 

Установим некоторые свойства градиента.

Отсюда следует, что производная по направлению достигает наибольшего значения, когда , т.е. при .

1) Производная в данной точке по направлению вектора имеет наибольшее значение, если направление вектора совпадает с направлением градиента; это наибольшее значение производной равно .

Таким образом, направление градиента есть направление наискорейшего возрастания функции. В противоположном направлении функция будет быстрее всего убывать. - наибольшая скорость изменения функции в точке .

 

2) Производная по направлению вектора, перпендикулярного к вектору , равна нулю.

 

3) Градиент функции в каждой точке направлен по нормали к поверхности уровня скалярного поля, проходящего через эту точку.

 

Пример 4.2. Дана функция . Найти:

1) производную в точке по направлению вектора ;

2) производную в точке по направлению к точке ;

3) градиент функции в точке ;

4) наибольшую скорость возрастания функции в точке .

Решение. 1) Находим частные производные и значения частных производных в точке :

;

 

;

 

.

Находим направляющие косинусы вектора :

.

Тогда по формуле (4.1) получаем:

.

Так как , то в данном направлении функция возрастает.

 

2) Находим координаты и направляющие косинусы вектора :

;

.

Тогда по формуле (19.16) получаем:

.

Так как , то в данном направлении функция убывает.

 

3) Используя формулу (4.3) запишем градиент функции в точке :

.

 

4) Находим наибольшую скорость возрастания функции в точке :

.

,

 

 

Основные понятия

Функции двух переменных

 

Функции одной независимой переменной не охватывают все зависимости, существующие в природе. Поэтому естественно расширить известное понятие функциональной зависимости и ввести понятие функции нескольких переменных.

Например, площадь прямоугольника есть функция двух независимо друг от друга изменяющихся переменных – длин сторон прямоугольника и , которая выражается формулой:

.

Работа постоянного электрического тока является функцией от разности потенциалов на концах участка, силы тока и времени , которая выражается формулой

.

Например, функция

есть функция от четырех переменных и .

 

Остановимся на случае двух переменных, которые будем обозначать и .

Каждой паре значений и соответствует точка на плоскости , координатами которой они служат. Рассмотрим некоторое множество точек на плоскости и обозначим его через , т.е. . Надо отметить, что переменные и не зависимы друг от друга.

Определение 1.1. Если каждой паре из некоторой области их изменения , поставлено в соответствие определенное значение величины , то говорят, что есть функция двух независимых переменных и . Записывается

.

 

При этом и называются независимыми переменными (аргументами), а - зависимой переменной (функцией).

 

Определение 1.2. Множество пар значений и , при которых определена функция , называется областью определения функции, обозначается .

Если каждую пару значений и можно изобразить точкой на плоскости , то область определения функции изобразиться в виде некоторой совокупности точек этой плоскости. В частности, область определения может быть вся плоскость или ее часть, ограниченная некоторыми линиями.

Определение 1.3. Линию, ограничивающую область, называют границей области. Точки области, не лежащие на границе, называются внутренними. Область, состоящая из одних внутренних точек, называется открытой. Область с присоединенной к ней границей называется замкнутой.

Пример 1.1. Найти область определения функции

.

Решение. Областью определения данной функции является множество точек плоскости , которые удовлетворяют решению системе неравенств

.

,

Определение функции двух переменных легко обобщить на случай трех или более переменных.

Определение 1.4. Если каждой рассматриваемой совокупности значений переменных соответствует определенной значение переменной , то называют функцией независимых переменных и записывают

.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 784; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.149 с.)
Главная | Случайная страница | Обратная связь