![]() |
Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Случаи уточнения формулы разложения
Некоторые замечания к формуле разложения 1. При наличии в цепи синусоидальной ЭДС
2. Принужденной составляющей от действия источника синусоидальной ЭДС в формуле разложения соответствует слагаемое, определяемое корнем 3. Комплексно-сопряженным корням уравнения
Расчет переходных процессов операторным методом при ненулевых начальных условиях. Используя принцип наложения, расчет цепи с ненулевыми начальными условиями можно свести к расчету схемы с нулевыми начальными условиями. Последнюю цепь, содержащую пассивные элементы, можно затем с помощью преобразований последовательно-параллельных соединений и треугольника в звезду и наоборот свести к виду, позволяющему определить искомый ток по закону Ома с использованием формул включения. Методику сведения цепи к нулевым начальным условиям иллюстрирует рис. 3, на котором исходная схема на рис. 3, а заменяется эквивалентной ей схемой на рис. 3, б, где Следует отметить, что если определяется ток в ветви с ключом, то достаточно рассчитать схему на рис. 3, г. При расчете тока в какой-либо другой ветви АД в соответствии с вышесказанным он будет складываться из тока в этой ветви до коммутации и тока в ней, определяемого подключением ЭДС Аналогично можно показать, что отключение ветви, не содержащей индуктивных элементов, при расчете можно имитировать включением в нее источника тока, величина которого равна току в ветви до коммутации, и действующему навстречу ему.
Некорректные начальные условия. Первый и второй законы коммутации при некорректных начальных условиях. Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи)
Действительно, при переводе в схеме на рис. 2, а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа. Аналогично при размыкании ключа в схеме на рис. 2, б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа. Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:
Метод переменных состояний Уравнения элекромагнитного состояния – это система уравнений, определяющих режим работы (состояние) электрической цепи. Метод переменных состояния основывается на упорядоченном составлении и решении системы дифференциальных уравнений первого порядка, которые разрешены относительно производных, т.е. записаны в виде, наиболее удобном для применения численных методов интегрирования, реализуемых средствами вычислительной техники. Количество переменных состояния, а следовательно, число уравнений состояния равно числу независимых накопителей энергии. К уравнениям состояния выдвигаются два основных требования: - независимость уравнений; - возможность восстановления на основе переменных состояния (переменных, относительно которых записаны уравнения состояния) любых других переменных. Первое требование удовлетворяется специальной методикой составления уравнений состояния, которая будет рассмотрена далее. Для выполнения второго требования в качестве переменных состояния следует принять потокосцепления (токи в ветвях с индуктивными элементами) и заряды (напряжения) на конденсаторах. Действительно, зная закон изменения этих переменных во времени их всегда можно заменить источниками ЭДС и тока с известными параметрами. Остальная цепь оказывается резистивной, а следовательно, всегда рассчитывается при известных параметрах источников. Кроме того, начальные значения этих переменных относятся к независимым, т.е. в общем случае рассчитываются проще других. При расчете методом переменных состояния, кроме самих уравнений состояния, связывающих первые производные Таким образом, полная система уравнений в матричной форме записи имеет вид
Здесь Начальные условия для уравнения (2) задаются вектором начальных значений В качестве примера составления уравнений состояния рассмотрим цепь на рис. 4, а, в которой требуется определить токи По законам Кирхгофа для данной цепи запишем
Поскольку или в матричной форме записи
А В Матричное уравнение вида (3) вытекает из соотношений (4) и (6):
С D
Вектор начальных значений Непосредственное использование законов Кирхгофа при составлении уравнений состояния для сложных цепей может оказаться затруднительным. В этой связи используют специальную методику упорядоченного составления уравнений состояния
|
Последнее изменение этой страницы: 2017-03-15; Просмотров: 527; Нарушение авторского права страницы