Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Геотектоника. Тектонические движения земной коры



Геологические процессы

Общие понятия о геодинамических процессах. Процессы внутренней динамики (эндогенные) и формы их проявления. Тектонические движения, землетрясения, магматизм, метаморфизм. Процессы внешней динамики (экзогенные): выветривание, деятельность ветра, поверхностных временных и постоянных водных потоков, подземных вод, ледников, озер, морей и океанов. Процессы, протекающие в болотах и в зонах развития многолетнемерзлых горных пород. Гравитационные процессы. Внутренние и внешние источники энергии и их взаимодействие. Закономерное развитие, связь и взаимная обусловленность геологических процессов. Рельеф земной поверхности как результат взаимодействия эндогенных и экзогенных процессов.

На протяжении своего существования Земля прошла длинный ряд изменений, причем эти изменения происходят непрерывно. Они вызываются разнообразными процессами, различающимися по скоростям, масштабности проявления и источникам энергии. Эти процессы перемещения вещества, видоизменяющие земную кору и поверхность Земли, называются геологическими или геодинамическими.

Основными внутренними источниками энергии Земли являются: гравитационная дифференциация, ротационные (вращательные) силы, радиоактивный распад, химические и фазовые превращения, происходящие в недрах. Процессы, вызванные этими источниками энергии, называются эндогенными или процессами внутренней динамики. К ним относятся:

тектонические движения (колебательные и горообразовательные);

магматизм;

метаморфизм;

землетрясения.

 

Вторая группа процессов вызвана внешними источниками энергии и проявляется на поверхности Земли. Это солнечная энергия и гравитация, перемещения водных и воздушных масс, жизнедеятельность организмов, их воздействие на горные породы и минералы. Такие процессы называются экзогенными или процессами внешней динамики. В их состав входят:

выветривание;

геологическая деятельность ветра;

геологическая деятельность поверхностных текучих вод;

геологическая деятельность подземных вод;

геологическая деятельность ледников и водно-ледниковых потоков;

геологические процессы в мерзлой зоне литосферы;

геологическая деятельность морей и океанов;

геологическая деятельность озер и болот;

гравитационные процессы;

геологическая деятельность человека (техногенез).

 

Эндогенные и экзогенные процессы действуют одновременно, тесно связаны друг с другом и взаимообусловлены, их эволюционное развитие и взаимодействие привело к формированию современного облика Земли.


 

Геотектоника. Тектонические движения земной коры

Геотектоника - это наука геологического цикла, изучающая развитие и строение земной коры.

Тектонические движения - движения земной коры, вызванные процессами проходящими в ее недрах. Основной причиной тектонических движений считаются конвективные течения в мантии, возбуждаемые теплом распада радиоактивных элементов и гравитационной дифференциацией ее вещества в сочетании с действием силы тяжести и стремлением литосферы к гравитационному равновесию по отношению к поверхности астепосферы.

Вертикальные тектонические движения.

Любой участок земной поверхности с течением времени неоднократно испытывал восходящие и нисходящие тектонические движения. Имеются данные о погружении обширных районов дна в юго-западной части Тихого океана.

Однако колебания уровня моря нельзя связывать с локальными по площади поднятиями. Существуют другие доказательства вертикальных тектонических смещений.

Изменение характера осадконакопления.

Трансгрессия (наступление) моря, начавшаяся вследствие погружения суши, приводит к накоплению морских осадков на эрозионной поверхности Земли. Регрессия (отступление) отражается в смене морского осадконакопления континентальным или же просто прекращением морского осадконакопления с последующей эрозией. В стратиграфических разрезах запечатлено множество событий такого рода. Многократно море заливало целые области, затем покидало их, а спустя некоторое время снова покрывало водой. Максимальная амплитуда вертикальных тектонических движений отражена в максимальной мощности морских отложений на погружавшихся участках земной поверхности, может достигать 20 км. и более.

Крутопадающие сбросы со смещением по падению сбрасывателя. Любые разрывы со смещением слоев по падению или восстанию по плоскости сбрасывателя свидетельствуют о вертикальных тектонических смещениях. Они относительны: вверх? вниз? и т.д.

Максимальное относительное смещение по одной плоскости может достигать 1 км.

Поднятия. Морские отложения часто можно обнаружить высоко в горах. Они накапливались первоначально ниже уровня моря, но позже были подняты на большую высоту. Амплитуда подъема в ряде случаев может достигать 10 км.

Метаморфизм. На поверхности Земли широко распространены метаморфозы породы, которые были перекристаллизированы при давлениях до 10 кбар и более. Такие давления достигаются на глубинах до 20 - 30 км, характерных для пород глацкофанлавсаней-сланцевой фации. Степень перекристаллизации этих пород, свидетельствует о том, что в процессе геологической истории эрозией была уничтожена мощная перекрывавшая их толща отложений, а амплитуда поднятия составляет 20-30 км.

Поднятия могут происходить с деформацией или без деформации слоев. Например, в области современного плато Колорадо, где в PZ и MZ происходит спокойное осадконакопление, воздымание произошло в раннем Z и не сопровождалось занятной деформацией слоев (в районе Большого Каньона залегают совершенно горизонтально). А докембрийский щит Западной Австралии был поднят вдоль разлома на западной окраине континента; этому разлому в рельефе поверхности соответствует уступ.

В некоторых случаях перемещения могут обусловливаться стремлением к изостатическому равновесию. Если, например, эрозией уничтожается часть телец создающих нагрузку в горном хребте, остаток хребта воздымается, а если на морском дне отлагаются осадки, оно может прогибаться под их тяжестью.

Тектонические нарушения (деформации).

Большинство осадочных пород и лавовых потоков формируется и первоначально залегает в виде > или < горизонтальных слоев, но при исследовании обнажений в высоких обрывах или стенках карьеров можно заметить, что горизонтальное залегание пород встречается редко; обычно они наклонены или вообще раздроблены. Эти явления называют тектоническими нарушениями.

При горизонтальном залегании может быть нормальное и перевернутое залегание пород, которые распознаются по различным текстурным образованиям, например, косой слоистости, следам дождевых капель, трещин усыхания и др.

Положение слоя в пространстве характеризуется двумя взаимно перпендикулярными направлениями: линиями простирания и падения, приходящими в плоскости напластования и называемыми элементами залегания слоя (см.рис.).

Наиболее просто определяется линия простирания (линия пересечения поверхности напластования с горизонтальной плоскостью), для установления положения которой используется два инструмента: клинометр (угломер) - для определения ее положения на поверхности напластования, и компас - для определения ее направления относительно сторон света.

Направление простирания характеризуется азимутом - углом между линией простирания и направлением магнитного меридиана, считая его от северного конца по ходу часовой стрелки. Оба этих инструмента обычно объединяются в одном инструменте - горном компасе. Перпендикулярная к линии простирания и направленная вниз - линия падения. Клинометром замеряют угол падения. Компасом замеряют азимут падения.

Различают тектонические нарушения, складчатые и разрывные.

Землетрясения.

Землетрясения - это сотрясение земной коры, вызванное мгновенной разрядкой напряжений, накапливающихся в разных участках земной коры. Регистрируются землетрясения сейсмографами установленными на сейсмических станциях (в мире их свыше 700). Ежегодно они регистрируют несколько миллионов землетрясений. Среди них около ста разрушительных, одно-два опустошительных.

Место в земной коре или в верхней мантии, где произошло смещение масс, вызвавшее упругие волны в теле Земли, называется гипоцентром (очаг или фокус) землетрясения.

Волны от гипоцентра расширяются, постепенно затухая, во все стороны. Скорее всего волны достигают поверхности Земли в области, лежащей над гипоцентром, т.к. они направлены к поверхности Земли. Область поверхности Земли, где наблюдаются вертикальные удары, называется эпицентром. При увеличении расстояния от эпицентра в два раза энергия очага убывает в 10-12 раз и т.д.

Во время Ашхабадского землетрясения 1948 г. при глубине очага 15-20 км. эпицентральная область достигает 100 км., а ширина 10 км. За последнее время катастрофические землетрясения произошли в Чили (1960 г.), Аляске (1969 г.), Китае (1976 г.). В СССР: Ташкентское (1966 г.), Дагестанское (1970, 1976, 1984 гг.) и Спитакское в Армении (1988 г.).

Для определения силы интенсивности землетрясений на поверхности Земли разработаны сейсмические шкалы. Каждый балл шкалы условно выражается цифрой, соответствующей определенной системе, разрушению построек, почвы, психологическому состоянию людей и т.д.

В нашей стране используют 12-бальную шкалу С.В. Медведева, В. Шпонхойера (ГДР) и В. Карника (Чехословакия) - ╚ MSK - 64╩, которая положена в основу международной шкалы. В Европе и Америке используют шкалу американского геофизика Ч. Рихтера, предложенную им в 1935 г., которая изменяется от 0 до 8, 8.

Графическое изображение хода землетрясения - сейсмограмма.

По данным сейсмографов строят карты изосейст (линии, соед. точки одинаковой силы землетрясения).

При землетрясениях высвобождается огромная энергия. Сейсмологи применяют условную энергетическую характеристику - магнитуду М или мощностью землетрясений.

Землетрясениям обычно предшествуют и сопровождают подземный гул, дефорсиация почвы, разрывы в земной коре, камнепады, обвалы, оползни.

Сейсмические области. Сильные и частые землетрясения наблюдаются в периферической части Тихого океана.

Тихоокеанический сейсмический пояс, где они связаны с глубинными разломами. Очаги здесь сосредоточены в не широкой (70-80 км.) зоне, наклоненной в сторону материков под углом 30-60°: зоны Беньофа-Заварицкого.

Трансевроазиатский или Средиземно-Индонезийский пояс, охватывающий складчатые сооружения от Гибралтара до Малайского архипелага.

Атлантический пояс - приурочен к срединно-океаническому хребту. В нем в последние два десятилетия сильно активизировались сейсмические процессы.

Индийско-Африканский пояс - охватывает хребты Индийского океана, районы, прилегающие к великим грабенам Центральной Африки, к грабенам Красного моря, Палестины, Сирии.


 

современные движения земной коры, поднятия, опускания, сдвиги земной коры, происходящие в настоящее время или происходившие несколько сотен лет назад. Выявляются по геодезическим данным (повторные нивелировки, триангуляции, трилатерации), гидрографическим (уровнемерным) и геолого-геоморфологическим наблюдениям, путём сравнения старых и новых карт, аэроснимков разных лет, по историческим и археологическим материалам. Развиваются методы астрономической космической геодезии, геофизические (сейсмологические, наклономерные и др.). Некоторые исследователи к С. т. д. относят движения, протекавшие в течение исторического времени. Различают современного движения разного диапазона частот (от сейсмических волн до вековых движений), вертикальные и горизонтальные С. т. д. Они возникают в результате эндогенных причин, лунно-солнечных приливов в " твёрдой" Земле, периодических и непериодических процессов в атмо- и гидросфере, а также вследствие деятельности человека.

 

  Скорости вертикальной составляющей С. т. д. в пределах равнинно-платформенных областей измеряются обычно 0, 1—4 мм/год, но в центрах плейстоценового покровного оледенения (Фенноскандия, северная часть Северной Америки, остров Шпицберген) и на периферии современного оледенения (Гренландия) достигают 5—20 мм/год. В областях активного горообразования (Кордильеры, Кавказ, Карпаты, Тянь-Шань) С. т. д. резко дифференцированы в соответствии с геологическими структурами; скорости здесь достигают 5—15 мм/год (для вертикальных составляющих) и 10—30 мм/год (для горизонтальных). В сейсмических и вулканических областях скорости С. т. д. в периоды активизации возрастают на несколько порядков.

 

  Исследование С. т. д. необходимо при крупном промышленном и гражданском строительстве (города, порты, ГЭС, водохранилища), эксплуатации месторождений угля, нефти, газа, подземных вод; данные используются при разработке методов прогноза землетрясений, вулканических извержений и др.

 

  Изучение С. т. д. ведётся во многих странах (СССР, Япония, Канада, США, Финляндия), опубликована карта вертикальных С. т. д. Восточной Европы. В масштабах всей планеты сотрудничество проводится Международной комиссией по изучению С. т. д. См. также Неотектоника.

 


 

Новейшие тектонические движения - тектонические движения, происходившие и происходящие с конца палеогена до настоящего времени. Новейшие тектонические движения создали все формы мега- и макрорельефа, существующие ныне в пределах материков и океанов.

 

Тектонические движения

Tectonic movements

Вековые колебания земной коры - медленные волновые движения (поднятия и опускания) земной коры, происходящие повсеместно и непрерывно и сменяющие друг друга во времени и пространстве. Эти движения происходят на протяжении всей геологической истории и приводят к изменению высоты суши, глубины моря, а также к наступлению моря на сушу (трансгрессия) или к расширению суши за счет моря (регрессия).

 

Горообразование - процесс создания на земной поверхности горных систем, горных стран в результате интенсивных поднятий земной коры со скоростью, превышающей скорость разрушения гор процессами денудации.

Процессы горообразования неоднократно происходили на протяжении геологической истории в заключительной фазе развития геосинклиналей (молодые горы), нередко распространяясь и на платформы (возрожденные горы).

 

Движения по разломам

Движения по разрывам

Движения по разломам - вид тектонических движений; необратимые перемещения блоков земной коры относительно друг друга по уже существующим разрывам или одновременно с образованием новых разрывов.

Движения по разломам часто приводят к землетрясениям, особенно при образовании новых разрывов.

 

Складкообразование - тектонические движения, приводящие к изгибу слоев и образованию складок. Непосредственная причина складкообразования - боковое сжатие пачки слоев. Нередко складкообразование сопровождается разрывами горных пород.

Складкообразование - необратимый процесс: слой, смятый в складки, в дальнейшем уже не может быть распрямлен.

 

 

Методы изучения Колебательные движения земной коры различны для прошлых геологических периодов, антропогенового периода и современной эпохи. Для выявления современных движений, происходивших в историческое время и продолжающихся ныне, применяют геодезические методы, основанные на длительных наблюдениях над уровнем моря или на повторных точных нивелировках. Эти наблюдения показывают, что обычная скорость современных Колебательные движения земной коры измеряется миллиметрами (до 2—3 см) в год. Колебательные движения земной коры, начавшиеся с неогена и создавшие современные формы рельефа, называются новейшими и изучаются главным образом методами геоморфологии (см. Неотектоника). Колебательные движения земной коры более ранних геологических периодов запечатлены в составе, слоистости и мощности отложений.

Региональная сейсмичность

Сейсмичность

Seismicity

Сейсмичность - подверженность Земли или отдельных территорий землетрясениям. Сейсмичность характеризуется территориальным распределением очагов, интенсивностью и другими характеристиками землетрясений.

 

Сила землетрясения

Очаг землетрясения - область в литосфере, где происходит быстрое перемещение масс вдоль образующегося или развивающегося тектонического разрыва, возникают упругие колебания и высвобождение накопленной энергии.

Моретрясение

Моретрясение - землетрясение с эпицентром на дне моря или океана. Моретрясение сопровождается образованием на поверхности моря гравитационных волн (цунами).

 

Глубина очага

Глубина очага - расстояние от гипоцентра до его проекции на земную поверхность (эпицентра).

 

Макросейсмические исследования - сейсмологические исследования, основанные на изучении проявления землетрясений на поверхности Земли. Макросейсмические исследования позволяют оценивать конфигурацию зон той или иной балльности, давать информацию о сейсмическом режиме, судить о параметрах очага и строении среды.

 

Предвестники землетрясения

Региональная сейсмичность

Сейсмический пояс - глобальные протяженные зоны концентрации очагов землетрясений. На земном шаре основными сейсмоактивными поясами являются: Тихоокеанский, Средиземноморско-Азиатский и Монголо-Байкальский.

Макросейсмические исследования - сейсмологические исследования, основанные на изучении проявления землетрясений на поверхности Земли. Макросейсмические исследования позволяют оценивать конфигурацию зон той или иной балльности, давать информацию о сейсмическом режиме, судить о параметрах очага и строении среды.


 

Структуры туфов

Туфы, как породы пирокластические, имеют кластические туфовые структуры, иногда очень сильно отличающиеся от структур осадочных пород. В неизмененных или мало измененных туфах встречаются часто обломки стекла, имеющие нередко характерную форму дужек, лунок (в разрезе), совершенно неправильных тонкопористых частиц и пр. (вулканический пепел), придающих породе под микроскопом своеобразный облик. Кроме того, в нормальных осадочных породах при достаточной крупности их зерна (около 1 мм) часто наблюдаются окатанные зерна минералов, в то время как в туфовых структурах встречаются нередко прекрасно образованные кристаллы, а также вкрапленники - капли застывшей лавы, выброшенной силой взрыва из жерла вулканов. Очень мала вероятность встречи в собственно осадочных породах обломков с резко выдающимися углами или пальцевидными отростками, так как такие их части должны легко обламываться в процессах переноса. В туфах могут встречаться зерна минералов с глубокими заливами от расплавления; так как часто эти минералы транспортируются только по воздуху, оставаясь на месте после своего падения, эти грубые и выдающиеся зазубрины на зернах минералов в туфах могут сохраниться, и т.д. Когда туфы сложены преимущественно обломками кристаллов, стекла, пород, они имеют соответственно кристалло-, витро- и литокластическую структуру.

 

Наверх

 

Структуры осадочных пород

Структура - важнейшая характеристика породы, выражающая ее зернистость (см. Фролов, 1992, стр 22, 88). Надо сначала подразделить породы на визуально зернистые и незернистые, " однородные". У яснозернистых отмечаются все стороны структуры: диапазон размеров зерен (от крупногo до самогo мелкоro видимогo), размер преобладающих преобладающей фракции зерен, степень равно- или разнозернистости, форма зерен и их соотношение (конформное или неконформное), если видно. Поскольку предел разрешения глазом около 0, 05 мм (по другим данным - 0, 1 мм), то визуально фиксируют этот размер (естественно, если такие зерна имеются в породе), а о более тонких фракциях породы или веществе гoворят в возможной форме. По преобладающему размеру называют породу, например, " среднезернистой". Если порода настолько разнозерниста, что преобладающую фракцию нельзя выделить, породу так и называют " разнозернистой ". По мере увеличения содержания преобладающей фракции возрастает и степень сортировки от плохой и средней к хорошей и очень хорошей или степень равнозернистости (см. Фролов, 1992).

Структуры осадочных пород по соотношениям зерен Таблица 1. (по: Фролов, 1992)
I. Конформнозернистые II. Неконформнозернистые
1. гипидиоморфнозернистая 2. гипидиогpанобластовая 3. гранобластовая, лепидобластовая, фибро- (или немато-) бластовая 4. Механоконформнозернистая 1. Цельноскелетные биоморфные: а) раковинные, или ракушняковые, б) биогeрмные и др. 2. Шаро- или сфероагpeгатные: а) оолитовая, б) сферолитовая, в) пизолитовая, г) бобовая, д) онколитовая, е) конкреционная, ж) желваковая, 3) копролитовая, и) окатышевая, к) сгyстковая, л) комковатая и др. 3. Обломочная, или кластическая: а) кристаллокластическая, б) литокластическая, в) витрокластическая, г) биокластическая

Осадочные породы имеют структуры, отличные от магматических. Большая масса этих пород — породы обломочные, структура их кластическая, т.е. порода состоит большей частью из обломков отдельных минералов или даже пород.

К органическим осадочным породам кластического же происхождения применяются те же структурные обозначения, а в химических осадках, по самому способу их происхождения, могут получиться структуры и кластического характера, и аналогичные структурам пород метаморфических, и частично также изверженных.

В осадочных породах нередки порфировые структуры: на фоне относительно микрозернистой или даже пелитоморфной массы выделяются крупные зерна (не больше 30-35%) - раковины, гальки или кристаллы, нередко идиоморфные. В последнем случае неправильно всегда делать вывод о их самом раннем выдлении: они могут быть и самыми последними в генерациях минералов, если минерал обладает большой кристаллизационной силой, например доломит в кальцитовой основной массе (Фролов, 1992). Я считаю, что употребление этого термина для кластических и органогенных пород недопустимо, его логичнее оставить для магматических и хемогенных пород во избежание путаницы.

Визуально незернистые породы называются пелитоморфными, если они землисты, т.е. глиноподобны (трепела, опоки, мергели, алевролиты и т.д.), или афанитовыми, если они стекловаты, как обсидиан (яшмы, кремни, некоторые фарфоровидные известняки, фосфориты и др.).

Форма зерен оценивается по степени искаженности, например, мexaническими - разламыванием (дроблением), окатыванием или химическими способами, а также по стeпени идиоморфности. Выделяют неокатанные, плоxo-, средне-, хорошо и очень хорошо окатанные зерна. Идиоморфные зерна противопоставляют неидиоморфным, не выразившим свою форму, как бы " бесформенным", а также ксеноморфным, приобретшим чужую форму (форму минерала, которого заместил данный или заполнил после растворения). В осадочных породах важна не только кристаллическая форма, но и органогенная или натечно-коллоидная, конкреционная и др. (см. Фролов, 1992)

Различают три или четыре типа конформных структур (см. табл.1).


Рис. 1. Структуры осадочных пород по соотношению зерен:
1-3 - конформнозернистые и 4-6 - неконформнозернистые структуры: 1a - гипидиоморфная, 1б - гипидиобластовая с элементами биоморфной, 2а, 2б, 2в - гpaнo-, лепидо- и нематобластовые; 3 - механоконформная; 4 - обломочная, или кластическая; 5 - биоморфная раковинная; 6 - сфероагpeгатная, например оолитовая

(по: Фролов, 1992)

1. Гипидиоморфная (рис.1, 1а), в которой зернами являются кристаллы, последовательность выделения которых выражается их степенью идиоморфизма: ранние более идиоморфны, поздние приспосабливаются к промежуткам; образуется при кристаллизации из раствора, т.е. первично, подобно тому, как это происходит при кристаллизации из расплавов (граниты, габбро и др.).

2. Гипидиобластовая (рис.1, 1б) внешне похожа на гипидиоморфную, но существенно отличается происхождением: она не первична, а вторична, возникает при метасоматозе или перераспределении вещества в твердой породе, например при доломитизации известняков. Доломит, обладая большей кристаллизационной силой по сравнению с кальцитом, способен образовать свою ромбоэдрическую форму даже в твердой, известковой породе, как бы раздвинуть или уничтожить кристаллы кальцита. Эта структура является промежуточной между гипидиоморфной и гранобластовой.

3. Гранобластовая (рис.1, 2а), а в случае листоватой или волокнистой формы кристаллов - лепuдобластовая (рис.1, 2б) и фuбробластовая (нематобластовая, рис.1, 2в). Кристаллы не идиоморфны, а неправильны. Они образуются при бластезе - росте кристаллов в твердой породе, при раскристаллизации аморфногo вещества или перекристаллизации кремневых, карбонатных, глинистых и других пород. Структура, таким образом, вторична. Она также свойственна всем метаморфическим породам: гнейсам, сланцам, амфиболитам и т.д.

4. Механоконформная (рис.1, 3), возникает при механическом приспособлении зерен друг к другу под давлением вышележащих слоев или стрессовым: более пластичные и менее крепкие зерна (слюды, обломки глин, сланцев, известняковв и т.д.) приспосабливаются к прочным (кварц, часто плагиоклазы, обломки кварцитов, кремней и др.), обжимаются вокруг них, прилегая плотно, без промежутков; прочные зерна часто вдавливаются в пластичные. Часто эти структуры конформны не полностью, так как степень механическогo приспособления бывает разной, варьирующей от 0 до 100%. Развивается структура по обломочной, раковинной и сфероагpегатной, реликты которых четко просматриваются.

Неконформнозернистые структуры характеризуются несоответствием контуров у соседних зерен, и последние не заполняют полностью пространство, часть eгo остается пустым (это пористость породы) или позже заполняется цементом. Каждое зерно индивидуально, идиоморфно, зерна не приспособлены друг к другу, и в породе возможно сближение зерен при уплотнении или перекристаллизации, при которых развиваются уже конформнозернистые структуры, стирающие первичные. В зависимости от формы и, следовательно, от способа образования зерен различают три основных типа неконформных структур.

1. Цельноскелетные биоморфные структуры - раковинные, или ракушняковые (структурными элементами - зернами - являютcя раковины), и биогeрмные - коралловые, строматолитовые и др., кoгдa захороняются скелеты обычно прикрепляющихся организмов (рис.1, 5).

2. Сфероaгрегатные (рис.1, 6), и примыкающие к ним многoчисленные структуры в основном химическогo и биологическогo происхождения, когда структурными элементами служат обычно сферические тела - aгpeгaты мелких кристалликов или аморфные образования, сохраняющие свою первичную форму: оолитовая, бобовая, конкреционная, желваковая, окатышевая и т.д. Они широко распространены в карбонатных, фосфатных, алюминиевых, железных, марганцевых и других породах.

3. Обломочные, или кластические, структуры (рис.1, 4): породы сложены обломками кристаллов, стекла, пород, органических остатков, т.е. имеют соответственно кристалло-, витро-, лито- и биокластическую структуру. Последняя нередко называется оргaногeнно-обломочной или органогeнно-детритовой. То, что зерна - обломки, видно по их контурам, которые представляют поверхности дробления с одной или разных сторон, первично целостногo кристалла, оолита, раковины или вулканическогo стекла. Обломочные структуры свойственны всем обломочным породам, большинству глинистых и фосфоритовых, многим карбонатным, бокситовым, эффузивным и дрyгим породам. Это самые распространенные осадочные структуры: ими обладают 60-70% осадочных пород или больше.

Размер зерен —
вторая, а для обломочных пород - первостепенная сторона структуры. Хотя еще существует некоторый разнобой в понимании гpаниц гpанулометрических (гpеч.гранула - зерно) типов и классов, особенно в разных странах, все же большинство из них понимается одинаково или близко. Из двух основных требований к гранулометрическим классификациям - естественность границ и удобство в употреблении - в существующих классификациях обычно выполняется одно, так как в детальных классификациях совместить их трудно. Требование естественности гpаниц особенно важно для обломочных пород, слагающихся из зерен, переносившихся и откладывавшихся индивидуально, когда проявлялись качественные скачки между разными популяциями зерен. К гpанулометрии кластолитов приспосабливаются размерностные структуры и других пород, что упрощает и унифицирует структурный анализ осадочных пород в целом.

По размеру зерна все структуры, как и породы, прежде всего делятся на три группы: яснозернистые (зерно которых видно не вооруженным глазом), и визуально воспринимаемые как сплошные, бесструктурные: скрытозернистые и незернистые, что и обозначается соответственно: пелитоморфные, т.е. глиноподобные, землистые (например, мергели, опоки, диатомиты), и афанитовые - стекловатые по виду (обсидианы, кремни, яшмы).

Главное значение в связи с процессами образования обломочных пород имеет величина обломков; поэтому различают кластические структуры:

· грубообломочные (ранее называли псефитовые, от др.-греч. psefos — камешек, голыш, галька), с величиной зерна больше 2 или 2, 5 мм;

· среднеобломочные (псаммитовые, от psammos — песок, с величиной зерна от 2, 5 (2, 0) до 0, 05 (0, 1) мм (для уточнения вместо этого термина используют: грубо-, средне-, мелкозернистые и т.д.) и

· мелкообломочные, или пелитовые (pelos— глина) — зерна размером менее 0, 05 (0, 1) мм.

Граница между последними 0, 05 мм - предел разрешения глазом зернистости. С этой границей совпадает скачок свойств и в породах: в более тонких осадках появляется связность, резко подскакивает высота капиллярного поднятия и т.д. Естественное обоснование имеет и граница 2 мм: более крупные обломочные породы практически только литокластические, т.е. состоящие из обломков пород, а более мелкие чаще бывают кристаллокластическими, т.е. состоящими из обломков минералов.

Граница 0, 0001 мм (или 0, 0002 мм) также естественна, так как отмечает верхний предел коллоидных растворов, не подчиняющихся силе тяжести, имеющих один заряд для всех частиц, снятие которых вызывает коагуляцию коллоидногo раствора и осаждение. Это и предел разрешения световогo микроскопа, так как размер коллоидных частиц меньше половины длины световой волны. Некоторое обоснование раздела гравия и галек в 10 мм приводит Л.Б. Рухин (1969). Верхний предел галек (10 см) принимается без обоснования, а иногда егo отодвигают до 20 см.

Важно отмечать габитус, или облик зерна: волокнистый, листоватый, уплощенный, призматический, кубический и т.д. Свою форму имеют и сохраняют или утрачивают не только кристаллы, но и раковины, сфероагрегаты, даже обломки пород и стекла. Описываются и все искажения или невыраженности идиоморфности: неправильность (в гранобластовых структурах), ксеноморфность (у псевдоморфоз, заполняющих объем замещенногo кристалла). Обычно выдляют зерна четырех типов:

1. изометричные, когда три поперечника зерна примерно равны между собой, или наибольший не превышает наименьший более чем в 1, 5 раза;

2. удлиненные, когда два поперечника примерно равны между собой, а третий превышаer их более чем в 1, 5 раза;

3. уплощенные, когда один из поперечников заметно (более чем в 1, 5 раза) меньше двух остальных (разновидность - листоватые);

4. удлиненно-уплощенные, промежуточные между вторым и третьим типами.

Из вторичных изменений формы наиболее важны окатанность и регенерированность, а также изменение формы при перекристаллизации. Окатанность оценивают по тpex- или пятибалльной шкале и нередко выражают в процентах. Зерна мельче 0, 05 мм практически никогда не окатываются, так как переносятся чаще вceгo во взвешенном состоянии.

 

Наверх

 

Текстуры горных пород

Текстуры, как и структуры, можно рассматривать отдельно для каждого из классов пород, но в таком случае будет довольно много повторяющегося текста. Поэтому я предпринял попытку объединить рассмотрение текстур в единый текст, уточняя по месту характерность тех или иных для определенных классов. Стало любопытно, что из этого получится.

Текстура - расположение зерен в породе - полнее всего изучается в обнажении, менее полно - в керне буровых скважин и в образцах. Текстура определяет не только многие физические свойства породы - проницаемость, крепость и раскалываемость, т.е. является самым выразительным признаком физической анизотропии породы, но и важнейшие генетические признаки, позволяющие восстанавливать динамику среды (воздушной или водной) - ее активность, характер движения (течения, волнения), eгo силу, направление и т.д. [см. Фролов, 1992]

Текстуры осадочных и вулканических пород подразделяются на поверхностные, присущие поверхностям напластования и объемные, слагающие весь объем породы. Примеры поверхностных текстур - канатные лавы, знаки ряби, трещины усыхания и т.д. После захоронения под следующим слоем осадка они могут переходить в части объемных текстур (волнистая и косая слоистость). Здесь рассматриваются только объемные текстуры. По той причине, что студенты по нашему учебному плану сначала сталкиваются с образцами пород в аудитории, а уже потом, на практике - в обнажении. И для учебных целей важнее именно объемные текстуры, которые можно наблюдать в отдельно взятых образцах.

Вкратце:

При расположении минералов в породе без всякого порядка получается массивная текстура, встречающаяся в породах магматических, метаморфических и осадочных. Последние имеют часто слоистую текстуру. Слоистая текстура выражается в чередовании, иногда очень тонком и резком, слоев различного состава, что характерно для осадочных пород. Для большинства метаморфических пород свойственна сланцеватая или полосчатая текстура, обусловленная параллельным расположением минералов, в строении которых должно быть ясно выражено направление — линейность или пластинчатость. Флюидальная текстура эффузивных пород, напоминающая отчасти линейную текстуру кристаллических сланцев и показывающая бывшее течение магмы, наблюдается в тех породах, в которых имеются минералы призматические, могущие запечатлеть течение лавы, и не видна там, где в тех же условиях отвердевания расплавленной массы минералы являются изометричными.


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 430; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.079 с.)
Главная | Случайная страница | Обратная связь