Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Структуры магматических пород
В зависимости от степени охлаждения магм должна находиться и степень их кристаллизации: С условиями кристаллизации магм должна быть связана величина зерна в полнокристаллических породах. Очевидно, если магма отвердевает медленно, то условия наиболее благоприятны для получения или наиболее крупных кристаллов (небольшое количество центров, достаточно быстрый рост), или, во всяком случае, кристаллов более или менее равномерных. Получаемые в результате структуры называются равномернозернистыми. При этом по величине кристаллов различают структуры: · гигантокристаллические при величине кристалла свыше 2 см; · крупнокристаллические при размере кристалла выше 5 мм; · среднекристаллические с величиной кристалла от 1 до 5 мм; · мелко- и тонкокристаллические — кристаллы видны невооруженным глазом; · микрокристаллические — кристаллы видны в лупу или под микроскопом, и · скрытокристаллические — в породах под микроскопом обнаруживается только кристалличность, а отдельные зерна неразличимы. Из схем кристаллизации видно, что при кристаллизации расплавов и, следовательно, при образовании горной породы сначала выделяется один минерал, который в дальнейшем растет, затем, при продолжающемся выделении этого минерала, начинает выделяться следующий и т.д. Кроме того, при наличии порядка кристаллизации отдельных минералов, совершенно неизбежно, что первые минералы, кристаллизуясь при более высокой температуре, находятся в более благоприятных условиях для роста, чем более поздние, выделяющиеся в более вязкой жидкости, и т.д. Наконец, может случиться и так, что часть магмы затвердевает в очень благоприятных для кристаллизации условиях на глубине, а не успевшая закристаллизоваться часть ее вместе с выделившимися кристаллами изливается или в более высокие горизонты или на земную поверхность, где условия для кристаллизации менее или весьма неблагоприятны как вследствие быстрого понижения температуры, так и вследствие выделения газов и паров, благоприятствующих жидкостности магмы, и следовательно, росту кристаллов. Эти обстоятельства, порознь или вместе, неизбежно влекут за собой неравномерность зерен минералов одних и тех же или разных видов в породе. Получается так называемая порфировая структура, при которой минералы породы весьма сильно отличаются друг от друга по величине. Раньше предполагали, что порфировая структура обусловливается исключительно внезапным изменением условий кристаллизации при излиянии; но она может получиться и при нормальном ходе кристаллизации по эвтектической схеме. Во всякой порфировой структуре различаются два элемента: более крупные кристаллы — порфиры или вкрапленники и мелкая масса, стекловатая или неполнокристаллическая, служащая как бы цементом для вкрапленников — основная масса. Выделяют, кроме нормальной порфировой структуры, еще структуру порфировидную. Под порфировидной понимают такую структуру, при которой полнокристаллическая основная масса имеет легко различимое макроскопически зерно, в том числе и такое, которое может встретиться и в среднезернистой породе, как, например, в порфировидных гранитах. Связь степени кристалличности и величины кристаллов с условиями отвердевания магмы зависит от того, как скоро идет процесс остывания магмы. Магма затвердевает в породу не при определенной температуре, а в некотором интервале температур. Неполнокристаллическую породу без четко выраженных крупных вкрапленников часто называют афировой. От формы зерен минералов зависит облик структуры, особенно под микроскопом. Если минералы должны выделяться из магмы в определенном порядке, то, естественно, наибольшее число шансов для выявления свойственной им кристаллической огранки имеют минералы, выделяющиеся в самом начале; наоборот, минералы, кристаллизующиеся в конце, будут связаны в проявлении своей огранки выделившимися ранее минералами, так как они могут только заполнять оставленное последними пространство. Минералы, имеющие хорошую огранку, называются идиоморфными (греч. idjos — свой, собственный, свойственный); минералы, не имеющие собственных форм, представляют собой минералы ксеноморфные (ksenos — чужой); наконец, минералы, частью проявляющие собственную огранку, частью ограниченные другими, суть минералы гипидиоморфные (hupo — подчиненные). Полнокристиллические структуры зернистых пород или основных масс порфировых пород, в которых можно наметить степень идиоморфизма отдельных минералов, называются гипидиоморфнозернистыми. Многие авторы отождествляют степень идиоморфизма минералов с порядком их выделения из магмы. Это неверно. Резкий идиоморфизм одной составной части по отношению к другой может иметь место и при одновременной кристаллизации обеих и даже при более поздней кристаллизации более идиоморфного компонента. Известно также, что некоторые минералы обладают свойством проявлять при кристаллизации лучшую огранку, чем другие, кристаллизующиеся в тех же условиях; что тенденция к проявлению граней зависит от примесей и т.д. Все это говорит за то, что мы имеем право на основании структурных наблюдений говорить только о порядке идиоморфизма, а не о порядке выделения минералов. Гипидиоморфнозернистая структура все же, понятно, показывает, что какой-то порядок имел место не только в степени идиоморфизма минералов, но и в последовательности их выделения. Признавая правильность и важность всех высказанных здесь предостережений, можно, однако, признать, что в первом приближении наблюдение порядка идиоморфизма позволяет судить и о порядке кристаллизации. Структура, в которой минералы прорастают друг друга, давая более или менее правильные грани — структура письменная или пегматитовая. Если же при одновременном выделении минералы не прорастают друг друга, а соприкасаются, то получается структура аплитовая или панидиоморфнозернистая (греч. pan - весь; в приставках - совсем), в которой все минералы более или менее идиоморфны, более или менее изометричны. Эту структуру называют иногда сахаровидной. Структуры туфов Туфы, как породы пирокластические, имеют кластические туфовые структуры, иногда очень сильно отличающиеся от структур осадочных пород. В неизмененных или мало измененных туфах встречаются часто обломки стекла, имеющие нередко характерную форму дужек, лунок (в разрезе), совершенно неправильных тонкопористых частиц и пр. (вулканический пепел), придающих породе под микроскопом своеобразный облик. Кроме того, в нормальных осадочных породах при достаточной крупности их зерна (около 1 мм) часто наблюдаются окатанные зерна минералов, в то время как в туфовых структурах встречаются нередко прекрасно образованные кристаллы, а также вкрапленники - капли застывшей лавы, выброшенной силой взрыва из жерла вулканов. Очень мала вероятность встречи в собственно осадочных породах обломков с резко выдающимися углами или пальцевидными отростками, так как такие их части должны легко обламываться в процессах переноса. В туфах могут встречаться зерна минералов с глубокими заливами от расплавления; так как часто эти минералы транспортируются только по воздуху, оставаясь на месте после своего падения, эти грубые и выдающиеся зазубрины на зернах минералов в туфах могут сохраниться, и т.д. Когда туфы сложены преимущественно обломками кристаллов, стекла, пород, они имеют соответственно кристалло-, витро- и литокластическую структуру.
Наверх
Структуры осадочных пород Структура - важнейшая характеристика породы, выражающая ее зернистость (см. Фролов, 1992, стр 22, 88). Надо сначала подразделить породы на визуально зернистые и незернистые, " однородные". У яснозернистых отмечаются все стороны структуры: диапазон размеров зерен (от крупногo до самогo мелкоro видимогo), размер преобладающих преобладающей фракции зерен, степень равно- или разнозернистости, форма зерен и их соотношение (конформное или неконформное), если видно. Поскольку предел разрешения глазом около 0, 05 мм (по другим данным - 0, 1 мм), то визуально фиксируют этот размер (естественно, если такие зерна имеются в породе), а о более тонких фракциях породы или веществе гoворят в возможной форме. По преобладающему размеру называют породу, например, " среднезернистой". Если порода настолько разнозерниста, что преобладающую фракцию нельзя выделить, породу так и называют " разнозернистой ". По мере увеличения содержания преобладающей фракции возрастает и степень сортировки от плохой и средней к хорошей и очень хорошей или степень равнозернистости (см. Фролов, 1992).
Осадочные породы имеют структуры, отличные от магматических. Большая масса этих пород — породы обломочные, структура их кластическая, т.е. порода состоит большей частью из обломков отдельных минералов или даже пород. К органическим осадочным породам кластического же происхождения применяются те же структурные обозначения, а в химических осадках, по самому способу их происхождения, могут получиться структуры и кластического характера, и аналогичные структурам пород метаморфических, и частично также изверженных. В осадочных породах нередки порфировые структуры: на фоне относительно микрозернистой или даже пелитоморфной массы выделяются крупные зерна (не больше 30-35%) - раковины, гальки или кристаллы, нередко идиоморфные. В последнем случае неправильно всегда делать вывод о их самом раннем выдлении: они могут быть и самыми последними в генерациях минералов, если минерал обладает большой кристаллизационной силой, например доломит в кальцитовой основной массе (Фролов, 1992). Я считаю, что употребление этого термина для кластических и органогенных пород недопустимо, его логичнее оставить для магматических и хемогенных пород во избежание путаницы. Визуально незернистые породы называются пелитоморфными, если они землисты, т.е. глиноподобны (трепела, опоки, мергели, алевролиты и т.д.), или афанитовыми, если они стекловаты, как обсидиан (яшмы, кремни, некоторые фарфоровидные известняки, фосфориты и др.). Форма зерен оценивается по степени искаженности, например, мexaническими - разламыванием (дроблением), окатыванием или химическими способами, а также по стeпени идиоморфности. Выделяют неокатанные, плоxo-, средне-, хорошо и очень хорошо окатанные зерна. Идиоморфные зерна противопоставляют неидиоморфным, не выразившим свою форму, как бы " бесформенным", а также ксеноморфным, приобретшим чужую форму (форму минерала, которого заместил данный или заполнил после растворения). В осадочных породах важна не только кристаллическая форма, но и органогенная или натечно-коллоидная, конкреционная и др. (см. Фролов, 1992) Различают три или четыре типа конформных структур (см. табл.1). (по: Фролов, 1992) 1. Гипидиоморфная (рис.1, 1а), в которой зернами являются кристаллы, последовательность выделения которых выражается их степенью идиоморфизма: ранние более идиоморфны, поздние приспосабливаются к промежуткам; образуется при кристаллизации из раствора, т.е. первично, подобно тому, как это происходит при кристаллизации из расплавов (граниты, габбро и др.). 2. Гипидиобластовая (рис.1, 1б) внешне похожа на гипидиоморфную, но существенно отличается происхождением: она не первична, а вторична, возникает при метасоматозе или перераспределении вещества в твердой породе, например при доломитизации известняков. Доломит, обладая большей кристаллизационной силой по сравнению с кальцитом, способен образовать свою ромбоэдрическую форму даже в твердой, известковой породе, как бы раздвинуть или уничтожить кристаллы кальцита. Эта структура является промежуточной между гипидиоморфной и гранобластовой. 3. Гранобластовая (рис.1, 2а), а в случае листоватой или волокнистой формы кристаллов - лепuдобластовая (рис.1, 2б) и фuбробластовая (нематобластовая, рис.1, 2в). Кристаллы не идиоморфны, а неправильны. Они образуются при бластезе - росте кристаллов в твердой породе, при раскристаллизации аморфногo вещества или перекристаллизации кремневых, карбонатных, глинистых и других пород. Структура, таким образом, вторична. Она также свойственна всем метаморфическим породам: гнейсам, сланцам, амфиболитам и т.д. 4. Механоконформная (рис.1, 3), возникает при механическом приспособлении зерен друг к другу под давлением вышележащих слоев или стрессовым: более пластичные и менее крепкие зерна (слюды, обломки глин, сланцев, известняковв и т.д.) приспосабливаются к прочным (кварц, часто плагиоклазы, обломки кварцитов, кремней и др.), обжимаются вокруг них, прилегая плотно, без промежутков; прочные зерна часто вдавливаются в пластичные. Часто эти структуры конформны не полностью, так как степень механическогo приспособления бывает разной, варьирующей от 0 до 100%. Развивается структура по обломочной, раковинной и сфероагpегатной, реликты которых четко просматриваются. Неконформнозернистые структуры характеризуются несоответствием контуров у соседних зерен, и последние не заполняют полностью пространство, часть eгo остается пустым (это пористость породы) или позже заполняется цементом. Каждое зерно индивидуально, идиоморфно, зерна не приспособлены друг к другу, и в породе возможно сближение зерен при уплотнении или перекристаллизации, при которых развиваются уже конформнозернистые структуры, стирающие первичные. В зависимости от формы и, следовательно, от способа образования зерен различают три основных типа неконформных структур. 1. Цельноскелетные биоморфные структуры - раковинные, или ракушняковые (структурными элементами - зернами - являютcя раковины), и биогeрмные - коралловые, строматолитовые и др., кoгдa захороняются скелеты обычно прикрепляющихся организмов (рис.1, 5). 2. Сфероaгрегатные (рис.1, 6), и примыкающие к ним многoчисленные структуры в основном химическогo и биологическогo происхождения, когда структурными элементами служат обычно сферические тела - aгpeгaты мелких кристалликов или аморфные образования, сохраняющие свою первичную форму: оолитовая, бобовая, конкреционная, желваковая, окатышевая и т.д. Они широко распространены в карбонатных, фосфатных, алюминиевых, железных, марганцевых и других породах. 3. Обломочные, или кластические, структуры (рис.1, 4): породы сложены обломками кристаллов, стекла, пород, органических остатков, т.е. имеют соответственно кристалло-, витро-, лито- и биокластическую структуру. Последняя нередко называется оргaногeнно-обломочной или органогeнно-детритовой. То, что зерна - обломки, видно по их контурам, которые представляют поверхности дробления с одной или разных сторон, первично целостногo кристалла, оолита, раковины или вулканическогo стекла. Обломочные структуры свойственны всем обломочным породам, большинству глинистых и фосфоритовых, многим карбонатным, бокситовым, эффузивным и дрyгим породам. Это самые распространенные осадочные структуры: ими обладают 60-70% осадочных пород или больше. Размер зерен — По размеру зерна все структуры, как и породы, прежде всего делятся на три группы: яснозернистые (зерно которых видно не вооруженным глазом), и визуально воспринимаемые как сплошные, бесструктурные: скрытозернистые и незернистые, что и обозначается соответственно: пелитоморфные, т.е. глиноподобные, землистые (например, мергели, опоки, диатомиты), и афанитовые - стекловатые по виду (обсидианы, кремни, яшмы). Главное значение в связи с процессами образования обломочных пород имеет величина обломков; поэтому различают кластические структуры: · грубообломочные (ранее называли псефитовые, от др.-греч. psefos — камешек, голыш, галька), с величиной зерна больше 2 или 2, 5 мм; · среднеобломочные (псаммитовые, от psammos — песок, с величиной зерна от 2, 5 (2, 0) до 0, 05 (0, 1) мм (для уточнения вместо этого термина используют: грубо-, средне-, мелкозернистые и т.д.) и · мелкообломочные, или пелитовые (pelos— глина) — зерна размером менее 0, 05 (0, 1) мм. Граница между последними 0, 05 мм - предел разрешения глазом зернистости. С этой границей совпадает скачок свойств и в породах: в более тонких осадках появляется связность, резко подскакивает высота капиллярного поднятия и т.д. Естественное обоснование имеет и граница 2 мм: более крупные обломочные породы практически только литокластические, т.е. состоящие из обломков пород, а более мелкие чаще бывают кристаллокластическими, т.е. состоящими из обломков минералов. Граница 0, 0001 мм (или 0, 0002 мм) также естественна, так как отмечает верхний предел коллоидных растворов, не подчиняющихся силе тяжести, имеющих один заряд для всех частиц, снятие которых вызывает коагуляцию коллоидногo раствора и осаждение. Это и предел разрешения световогo микроскопа, так как размер коллоидных частиц меньше половины длины световой волны. Некоторое обоснование раздела гравия и галек в 10 мм приводит Л.Б. Рухин (1969). Верхний предел галек (10 см) принимается без обоснования, а иногда егo отодвигают до 20 см. Важно отмечать габитус, или облик зерна: волокнистый, листоватый, уплощенный, призматический, кубический и т.д. Свою форму имеют и сохраняют или утрачивают не только кристаллы, но и раковины, сфероагрегаты, даже обломки пород и стекла. Описываются и все искажения или невыраженности идиоморфности: неправильность (в гранобластовых структурах), ксеноморфность (у псевдоморфоз, заполняющих объем замещенногo кристалла). Обычно выдляют зерна четырех типов: 1. изометричные, когда три поперечника зерна примерно равны между собой, или наибольший не превышает наименьший более чем в 1, 5 раза; 2. удлиненные, когда два поперечника примерно равны между собой, а третий превышаer их более чем в 1, 5 раза; 3. уплощенные, когда один из поперечников заметно (более чем в 1, 5 раза) меньше двух остальных (разновидность - листоватые); 4. удлиненно-уплощенные, промежуточные между вторым и третьим типами. Из вторичных изменений формы наиболее важны окатанность и регенерированность, а также изменение формы при перекристаллизации. Окатанность оценивают по тpex- или пятибалльной шкале и нередко выражают в процентах. Зерна мельче 0, 05 мм практически никогда не окатываются, так как переносятся чаще вceгo во взвешенном состоянии.
Наверх
|
Последнее изменение этой страницы: 2017-03-15; Просмотров: 318; Нарушение авторского права страницы