Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Интегральная оценка функционального состояния



Разнонаправленные сдвиги функциональных показателей организма в критическом состоянии выдвигают задачу объективной и комплексной оценки тяжести пациента, ориентированной на исход. Эта задача может быть решена путем применения различных прогностических схем, которые бывают специализированными и неспециализированными. Разработанные на основе математических моделей, эти схемы позволяют решать множество проблем, среди которых:

- объективная оценка тяжести состояния (заболевания), ориентированная на исход;

- возможность определения состояния в динамике, что позволяет оценивать эффективность проводимой терапии;

- рациональное использование медицинских сил и средств в условиях массового поступления больных и поражённых;

- оперативное, точное и простое определение очерёдности оказания помощи и её объёма, в том числе, выбор и последовательность операций, с обеспечением возможности проведения сортировки не только врачами, но и средними медицинскими работниками;

- определение количественного и качественного состава инфузионно-трансфузионной терапии;

- своевременное принятие мер по профилактике осложнений;

- документирование течения патологического процесса при ранениях и травмах;

- объективная оценка результатов лечения, включая определение эффективности работы стационара, отделения, каждого врача;

- обучение медицинского персонала.

Требования, предъявляемые к методикам оценки, следующие: простота, лёгкость в использовании; общедоступность данных, использующихся в качестве анализируемых показателей; достоверность.

Разработка прогностических систем началась в медицине преимущественно в рамках изучения механической травмы. Исследователи шли тремя путями. Одни считали, что тяжесть травмы лучше всего оценивать по морфологическим критериям, другие - на основе функционального состояния организма, третьи применили комплексный подход и использовали как анатомическую характеристику повреждения, так и реакцию основных систем организма на травму. Процесс математического прогнозирования шел по пути создания сначала простых описательных схем, а затем - сложных алгоритмов, требующих применения современной вычислительной техники.

Одна из первых серьезных попыток систематизации травм по тяжести была предпринята в США в 1971 г. посредством создания " Сокращенной шкалы повреждений" (Abbreviated Injury Scale - AIS). В 1974 г. на основе AIS (в результате квадратичного преобразования кодов) была разработана " Сокращенная шкала повреждений" (Injury Severity Score - ISS), предусматривающая перечисление возможных травм человеческого тела, условно разделенного на 5 областей: голова и шея, грудь, живот конечности, общие повреждения (ушибы, ссадины, ожоги и т.д.). Повреждения в этих зонах с помощью экспертов градуировались по возрастающей тяжести цифрами-кодами от 1 до 5. Код травмы хотя и свидетельствовал о ее тяжести, но в силу своей субъективности отнюдь не характеризовал последнюю количественно, поскольку был назначен в произвольном масштабе. Кроме того, чрезмерное увлечение детализацией различных видов травм привело к созданию весьма обширных списков повреждений в рамках ISS, которые в настоящее время занимают несколько десятков страниц печатного текста. Несмотря на недостатки и чисто «анатомический» подход к оценке тяжести повреждения, в большинстве западных стран использование шкалы ISS при травматических повреждениях считается обязательным, особенно когда речь идет о страховых выплатах и результатах лечения.

Тем не менее, неудовлетворенность клиницистов однобокостью подхода к оценке тяжести травмы обусловила большое количество разработок в этом направлении. В частности, результатом коллективного творчества участников одной из конференций по ISS в 1980 г. явилось создание шкалы Trauma Score (TS). Ее можно считать одним из примеров не «анатомического», а многофакторного и функционального подхода к оценке тяжести пострадавшего с травматическим шоком. Она позволяет учитывать одновременно несколько показателей, отражающих состояние функциональных систем (частота и характер дыхания, уровень систолического артериального давления, скорость наполнения капилляров, а также уровень сознания по шкале ком Глазго). Суммируя баллы, соответствующие оценке каждого из признаков, можно получить код, позволяющий количественно оценить тяжесть состояния пострадавшего. Возможность определения всех показателей без применения сложных инструментальных методик сделало ее доступной для любого этапа оказания помощи.

В 1982 г. S.P. Gormican разработал шкалу GRAMS, предназначенную для использования на догоспитальном этапе. Она получила название по пяти заглавным буквам функциональных показателей: Circulation (кровообращение), Respiration (дыхание), Abdomen (живот), Motor (движение), Speech (речь), каждому из которых присваивался соответствующий балл. На основании суммы баллов осуществлялась сортировка пострадавших с направлением их в ближайший многопрофильный госпиталь или в травматологические центры I, II или III уровней. Данная шкала, исходя из поставленной авторами цели, имела только сортировочное значение и была призвана решать относительно ограниченную задачу выбора места лечения пострадавшего.

В нашей стране при проведении оценки тяжести травмы наиболее популярны два подхода. В основе первого, автором которого явился профессор Санкт-Петербургского НИИ скорой помощи им. И.И. Джанелидзе Ю.Н. Цибин, лежит многофакторное уравнение, аргументами которого являются балл шокогенности травмы (способности повреждения вызывать развитие шока, рассчитывается по специальной таблице), уровень систолического АД в мм рт. ст., частота сердечных сокращений в минуту, возраст в годах. Решение этого уравнения в отношении конкретного пострадавшего позволяет получить величину «Т» в часах, знак которой свидетельствует о возможном положительном (+Т) или отрицательном (-Т) исходе шока в ближайшие 24 ч после травмы. При этом абсолютная величина «Т» при ее положительном значении соответствует предполагаемой длительности шока, а при отрицательном - вероятной продолжительности жизни. При абсолютных значениях «Т» более 24 ч прогноз считается неопределенным. Эта методика широко используется в лечебно-профилактических учреждениях МЗ РФ.

Второй подход, предложенный сотрудниками клиники Военно-полевой хирургии Военно-медицинской академии (Е.К. Гуманенко) и рекомендованный к применению в госпиталях МО РФ, предусматривает поэтапную оценку по таблицам тяжести повреждения, тяжести состояния и в совокупности тяжести травмы как при поступлении раненого или пострадавшего (шкала ВПХ-П), так и в процессе его лечения (шкала ВПХ-СГ).

Среди неспециализированных систем, позволяющих произвести интегральную оценку тяжести функционального состояния, наибольшее распространение в мировой практике получили системы АРАСНЕ (Acute Physiology Age Chronic Health Evaluation - оценка возраста, острых и хронических функциональных изменений) и SAPS (Simplified Acute Physiology Score - упрощенная шкала острых функциональных изменений).

Для определения тяжести больного по системе АРАСНЕ-III сначала с помощью ряда промежуточных таблиц (см. справочные материалы) производят расчет баллов, отражающих те или иные функциональные параметры. Затем по итоговой таблице определяют вероятность летального исхода и вероятную продолжительность пребывания больного в отделении интенсивной терапии. Данная методика применима как для оперированных, так и неоперированных больных.

Для определения состояния больного и степени риска операции наибольшее распространение нашла как наиболее простая и доступная для практики балльная оценка, принятая Американским обществом анестезиологов (см. гл. 7.2).

3.11. Обеспечение безопасности больного (мониторинг) во время анестезии, реанимации и интенсивной терапии

Безопасность пациента зависит от многих факторов: от его состояния и уровня профессиональной подготовки оказывающего ему помощь, используемых технических средств, уровня оснащенности рабочего места. Значимость этих факторов различна, человеческий фактор и мониторинг в обеспечении безопасности пациента при оказании анестезиологической и реаниматологической помощи являются основными.

Мониторинг следует проводить с целью контроля: 1) состояния больного (электрокардиография, пульсоксиметрия, капнография и др.); 2) лечебных действий (контроль нейромышечного блока, ЭЭГ); 3) окружающей среды (газового состава вдыхаемой смеси); 4) работы технических средств (аппарата ИВЛ и пр.). Мониторинг пациента - это контроль функций и процессов с целью выявления опасных их отклонений.

Мониторинг состояния пациента по степени сложностиможет включать в себя: 1) непрерывный контроль параметров; 2) непрерывный контроль с сигнализацией при выходе параметра за установленные пределы; 3) то же, что в п. 2 + подсказка решения; 4) то же, что в п. 3 + проведение мер по нормализации функции.

Показания для мониторинга:

минимального - обязателен всегда при анестезии и интенсивной терапии;

углубленного (с использованием неинвазивных и инвазивных методов) - при значительных нарушениях функций организма, особенно при развитии у больного полиорганной недостаточности, в специализированных разделах медицины (кардиохиргия, неврология и пр.);

профилактического - при риске развития критического состояния (у больных с инфарктом миокарда).

Мониторинг может быть инвазивным и неинвазивным. Предпочтение отдают неинвазивному мониторингу, при котором отсутствует внедрение в организм электродов, катетеров и других средств через кожу, сосуды, желудочно-кишечный тракт и дыхательные пути. Однако в случае необходимости (прежде всего при операциях на сердце, крупных сосудах, в трансплантологии и пр.) используют инвазивные методы.

Мониторинг позволяет осуществлять: 1) своевременную диагностику нарушений и профилактику тяжелых осложнений, в том числе остановки сердца и дыхания; 2) более правильную тактику интенсивной терапии, что повышает эффективность лечения.

Стандарты мониторинга. Во многих странах приняты стандарты минимального мониторинга во время анестезии, реанимации и интенсивной терапии. Аналогичные стандарты утверждены в Вооруженных силах РФ - дир. ГВМУ МО РФ N 161/ДМ-2 от 24 февраля 1997 г. «О мерах по обеспечению безопасности больных во время анестезии, реанимации и интенсивной терапии» (табл. 3.14, 3.15).

Таблица 3.14.

Стандарт минимального мониторига во время анестезии

Показатели Реализация
Нахождение анестезиолога-реаниматолога и медицинской сестры-анестезиста рядом с больным Постоянно
Измерение АД и частоты сердечных сокращений Через каждые 5 мин
Электрокардиоскопический контроль Непрерывно
Мониторинг оксигенации, вентиляции и кровообращения (клиническая картина, пульсоксиметрия, капнография, волюмоспирометрия и пр.) Непрерывно
Контроль герметичности дыхательного контура при ИВЛ Непрерывно
Контроль концентрации кислорода в дыхательной смеси Непрерывно
Измерение температуры тела При необходимости
Диурез При необходимости

 

Таблица 3.15.

Стандарт минимального мониторинга при проведении реанимации и интенсивной терапии

Показатели Реализация
Нахождение анестезиолога-реаниматолога или медицинской сестры-анестезиста на посту   Постоянно
Измерение АД, частоты сердечных сокращений и частоты дыхания Не реже 1 раза в час
Электрокардиоскопический контроль Непрерывно
Мониторинг вентиляции и кровообращения (клиническая картина, пульсоксиметрия, капнография, волюмоспирометрия и пр.)   Непрерывно
Контроль герметичности дыхательного контура при ИВЛ Непрерывно
Контроль давления в дыхательном контуре при ИВЛ Непрерывно
Контроль концентрации кислорода в дыхательной смеси Непрерывно
Измерение температуры тела Не реже 4 раз в сутки
Диурез Каждый час

 

Для обеспечения безопасности больного при интенсивной терапии нередко необходим расширенный мониторинг: контроль сердечно-сосудистой, дыхательной и нервной систем, функций печени, почек, желудочно-кишечного тракта, кроветворения, гемостаза, а также энергетического, водно-электролитного, кислотно-основного и онко-осмотического баланса. В равной степени имеет большое значение интенсивное наблюдение за проводимыми лечебными мероприятиями и их результатами. Немаловажную роль играет мониторинг наружного и внутреннего микробиологического статуса, а также применение прогностических критериев (например, APACHE III и др.) и оценка исходов.

Клинический мониторинг, т.е. наблюдение за клиническими признаками и симптоматикой, качественными данными, является не менее важным, чем количественные показатели, полученные с помощью сложной техники.

Мониторинг кровообращения предусматривает своевременную оценку функции сердца, тонуса сосудов, объема циркулирующей крови и в целом адекватности снабжения кровью жизненно-важных органов.

Аритмии сердца можно выявить с помощью ЭКГ по зубцу Р и комплексу ORS ЭКГ в IV и II стандартного биполярного отведения от конечностей или их модификаций. Микропроцессорные ЭКГ-мониторы могут автоматически регистрировать нарушения ритма, но нужна хорошая морфология зубца Р и комплекса ORS.

Об ишемии миокарда свидетельствуетдепрессия отрезка ST ЭКГ: 1) в отведении V5 или одной из ее модификаций - ишемия перегородки левой боковой стенки; 2) в биполярном отведении II от конечностей - ишемия нижней части миокарда в бассейне правой коронарной артерии. Косонисходящая депрессия ST (элевация) является индикатором ишемии под воздействием стресса. Горизонтальная депрессия имеет большее значение, чем его девиация.

Объем циркулирующей крови чаще всего определяют методом разведения красителя или по косвенным показателям (ЦВД в сочетании с объемными нагрузочными пробами - информация о степени наполнения сосудов).

Тонус сосудов оценивают на основании общего периферического сопротивления (ОПС), определяемого, например, методом интегральной реографии тела.

Контроль гемодинамики можно осуществлятьпутем: 1) измерения АД (неинвазивно или инвазивно); 2) длительной пальцевой плетизмографии; 3) измерения ЦВД в сочетании с объемными нагрузочными пробами; 4) определения давления в легочной артерии и давления заклинивания с помощью флотирующего катетера в легочной артерии (более точный метод для оценки внутрисосудистого объема, чем ЦВД, может также служить мерой преднагрузки левого желудочка); 5) оценки функции желудочков (SvO2 отражает тканевой баланс О2, а двухмерная чреспищеводная эхокардиография при анатомически правильном изображении позволяет определить размеры желудочков, используя автоматическую регистрацию, можно получить объем желудочков, фракцию выброса и др. показатели их работы); 6) определения сердечного выброса посредством термистера (термодилюционная методика), методом Фика (СВ=VO2/(a-v)CО2), различными модификациями методики Доплера (пищеводная доплеровская эхокардиография); 7) определения показателей центральной гемодинамики (сердечного и ударного индекса, общего периферического сопротивления - ОПС, объема клеточной и внеклеточной жидкости и др.), используя метод интегральной реографии тела по М. И. Тищенко и импедансометрию; 8) измерения индекса произведения частоты сердечных сокращений и АД систолического (ИПЧД=АДсист.·ЧСС; > 12000 - ишемия миокарда) и более точного показателя - соотношения среднего АД к частоте сердечных сокращений (ИСАДЧ=САД/ЧСС, САД=АДд·(АДс-АДд)/ЧСС; < 1 - субэндокардиальная ишемия).

Оценку микроциркуляции осуществляют на основании: симптома «белого пятна», величин почасового диуреза, разности температур центральной и периферической (между ректальной или подмышечной и в межпальцевом промежутке стопы), формы и величины подъема плетизмограммы.

Мониторинг дыхания осуществляют по клиническим признаками данным капнографии, пульсоксиметрии, волюмоспирометрии и периодическим исследованием газов крови. На основании полученных данных оценивают адекватность спонтанного дыхания и респираторной поддержки: вентиляцию (объем по FЕТCO2, в норме 4, 9-6, 4 об%, и равномерность - по Ð CO2, норма 5-7 градусов), оксигенацию (по SaO2, в норме 94-97% при дыхании воздухом) и степень нарушения газообмена в легких (по индексу оксигенации - РаО2/FiO2, в норме более 300, или альвеолярно-артериальной разности парциального давления кислорода - (А-а)рО2, в норме около 10 мм рт. ст. при дыхании воздухом и не более 100 при вдыхании 100% О2).

При ИВЛ, если отсутствует капнограф, объем вентиляции контролируется по минутному объему дыхания пациента (VE, МОД), измеряемому с помощьюволюмоспирометра.На основании минутного вдыхаемого объема (VI) и газотока можно рассчитать концентрацию О2 во вдыхаемой смеси. Эта задача отпадает, если в аппарате ИВЛ имеется датчик кислорода или к контуру дыхательному подключен газоанализатор кислорода.

Контроль герметичности системы «аппарат ИВЛ-больной» осуществляют на основании данных измеренного волюмоспирометром МОД на вдохе и выдохе, или по давлению в системе " аппарат-больной", измеряемом посредством моновакууметра.

Биомеханику дыхания оценивают на основании величины податливости легких и грудной клетки (С, в норме 100 мл/см Н2О) и сопротивления (резистентности) дыхательных путей (R, в норме у взрослых 1, 3-3, 0 и у детей 5, 5 см Н2О/л× с-1).

Мониторинг нейромышечной передачи осуществляют с помощью монитора типа TOF-GUARD или TOF-WATCH по показателям акцелерограммы: Tw1 (при однократной стимуляции, используемой при оценке блока деполяризующих миорелаксантов) и TOF (отношению величины четвертого ответа к первому на стимуляцию нерва, применяемой при недеполяризующих миорелаксантах). Диафрагма быстрее других периферических мышц восстанавливается после паралича. Вследствие этого даже полное исключение ответа на однократную и TOF-стимуляцию m. adductor pollicis не гарантирует от возможных движений диафрагмы, таких как икота, кашель. Поэтому для уверенности в параличе диафрагмы во время операции блокаду нужно поддерживать в такой степени, чтобы TOF в режиме РТС применительно к большому пальцу был равен нулю. При TOF=0, 6 больной может поднять голову на 3 сек, но сила вдоха часто оказывается недостаточной; при TOF=0, 7-0, 75 больной может широко открыть глаза, удовлетворительно покашлять и поднять голову на 5 сек. При значениях TOF=0, 8 и более жизненные возможности и сила вдоха в пределах нормы. Считают, что производить экстубацию и полностью переводить больного на спонтанное дыхание следует осуществлять, когда TOF составляет более 90%. Если экстубацию проводят при TOF < 70%, частота легочных осложнений после операции существенно возрастает.

Мониторинг неврологических функций осуществляют путем оценки сознания по шкале Глазго (на основании реакции открывания глаз, двигательного и словесного ответов на возрастающий по силе стимула). Кроме этого определяют внутричерепное давление, мозговой кровоток (например, с помощью транскраниального доплеровского монитора) и неврологический дефицит по клиническим признакам (наличие параличей или парезов). В последние годы вновь проявился интерес к использованию нейрофизиологических методик, особенно во время анестезии. Самыми распространенными из них являются спектральный и биспектральный анализ, вызванные потенциалы головного мозга (слуховые, соматосенсорные). Наиболее популярным среди них можно назвать метод биспектрального анализа ЭЭГ, позволяющего рассчитать т.н. биспектральный индекс (BIS). Признано, что он достаточно точно определяет адекватность гипнотического компонента при использовании некоторых ингаляционных и неингаляционных анестетиков. Мониторирование BIS позволяет избежать интраоперационного пробуждения больного, рационально использовать анестетики, как правило, в сторону уменьшения дозы, предсказать и сократить время восстановления сознания, уменьшить постнаркозную депрессию сознания и дыхания. Существенным недостатком метода является то, что он оценивает исключительно гипнотический компонент анестезии, не распространяясь на адекватность аналгезии.

Вызванные потенциалы головного мозга представляют собой характерную для каждого вида стимула кривую, выделяемую с помощью компьютерной обработки из ЭЭГ в ответ на определенный стимул. В анестезиологии наибольшее применение нашли среднелатентные слуховые вызванные потенциалы (СЛСВП, middle latency auditory evoked potentials, MLAEP). Увеличение латентности и уменьшение амплитуды пиков СЛСВП происходит с увеличением концентрации анестетика и хорошо коррелирует со степенью седации пациента. Эти характерные изменения кривой ответа представляются в виде индексов AEPindex и AAI. В частности, AEPindex предсказывает движения больного в ответ на болевую стимуляцию. Это, возможно, связано с тем, что СЛСВП отражают активность не только коры головного мозга, но и подкорковых структур.

Мониторинг функции почек осуществляют чаще всего путем определения почасового диуреза. Диурез в пределах нормы (> 0, 5 мл/кг × ч., при отсутствии полиурического состояния, например, при сахарным и несахарным диабете, тубулярном некрозе), свидетельствует об адекватной почечной перфузии. Нормальная тубулярная функция почек подтверждается следующими показателями: 1) индекс почечной недостаточности< 1 (ИПН=Na мочи / соотношение концентрации креатинина в моче к креатинину в плазме); 2) Na мочи < 20 ммоль/л; 3) осмоляльность мочи> 500 мосм/кг Н2О; 4) соотношение мочевина плазмы/креатинин -> 100; 5) креатинин мочи/креатинин плазмы > 40. Подъем креатинина плазмы запаздывает на 12-24 ч от клинического момента повреждения почек.

 

Глава 4.


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 711; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.036 с.)
Главная | Случайная страница | Обратная связь