Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Оптимальные параметры микроклимата на рабочих местах



Производственных помещений. (СанПиН 2.2.4.548-96)

Период года   Категория работ по уровню энергозатрат, Вт Температура воздуха, 0С Температура поверхностей, 0С Относительная влажность воздуха, % Скорость движения воздуха, не более м/с
Холодный 1а (до 139) 1б (140-174) 2а (175-232) б (233-290) 3 ( более 290) 22 – 24 21 – 23 19 – 21 17 – 19 16 - 18 21 – 25 20 – 24 18 – 22 16 – 20 15 – 19 60 – 40 60 – 40 60 – 40 60 – 40 60 - 40 0, 1 0, 1 0, 2 0, 2 0, 3
Теплый 1а (до 139) 1б (140-174) 2а (175-232) 2б (233-290) 3 ( более 290) 23 – 35 22 – 24 20 – 22 19 – 21 18 – 20 22 – 26 21 – 25 19 – 23 18 – 22 17 – 21 60 – 40 60 – 40 60 – 40 60 – 40 60 – 40 0, 1 0, 1 0, 2 0, 2 0, 3

 

Таблица 3.3

Допустимые параметры микроклимата на рабочих местах
производственных помещений

 

Период года Категория работ по уровню энергозатрат, Вт     Температура воздуха, 0С Температура поверх-ностей, 0С Относи-тельная влаж-ность воздуха, %   Скорость движения воздуха, не более м/с
    Диапазон ниже оптималь-ных величин Диапазон выше оптимальных величин     Для диапазона температур воздуха ниже оптимальных величин, не более Для диапазона температур воздуха выше оптимальных величин, не более
Холод-ный 1а (до 139) 1б (140-174) 2а (175-232) 2б (233-290) 3 ( более 290) 20, 0-21, 9 19, 0-20, 9 17, 0-18, 9 15, 0-16, 9 13, 0-15, 9 24, 1-25, 0 23, 1-24, 0 21, 1-23, 0 19, 1-22, 0 18, 1-21, 0 19-26 18-25 16-24 14-23 12-22 15-75 15-75 15-75 15-75 15-75 0, 1 0, 1 0, 1 0, 2 0, 2 0, 1 0, 2 0, 3 0, 4 0, 4
Теп лый 1а (до 139) 1б (140-174) 2а (175-232) 2б (233-290) 3 (более 290) 21, 0-22, 9 20, 0-21, 9 18, 0-19, 9 16, 0-18, 9 15, 0-17, 9 25, 1-28, 0 24, 1-28, 0 22, 1-27, 0 21, 1-27, 0 20, 1-26, 0 20-29 19-29 17-28 15-28 14-27 15-75 15-75 15-75 15-75 15-75 0, 1 0, 1 0, 1 0, 2 0, 2 0, 2 0, 3 0, 4 0, 5 0, 5

 

Допустимые величины интенсивности теплового облучения работающих от источников излучения, нагретых до белого и красного свечения (раскаленный или расплавленный металл, стекло, пламя и др.) не должны превышать
140 Вт/м2.

При этом облучению подвергается не более 25 % поверхности тела и обязательным является использование средств индивидуальной защиты, в том числе лица и глаз.

При наличии теплового облучения учитывается категория работы, поэтому при выполнении легкой работы допускается температура до 25 0С. Характеристики работы по энергозатратам приводятся в табл. 3.4.

Характеристику производственных помещений по категориям выполняемых работ в зависимости от затраты энергии следует устанавливать в соответствии с ведомственными нормативными документами из категории работ, выполняемых 50% и более работающими в соответствующем помещении. Рабочей зоной принято считать пространство, ограниченное по высоте 2 м над уровнем пола или площадки, на которых находятся места постоянного или временного пребывания работающих.

Таблица 3.4

Категории работ по энергозатратам

 

Работа Категория Энергозатраты организма (расход энергии при выполнении работ)   Характеристика работ
Легкая физическая Не более 150 ккал/ч (174 Вт)  
  Не более 120 ккал/ч (139 Вт) Работы, производимые сидя и сопровождающиеся незначительным физическим напряжением (ряд профессий на предприятиях точного приборо- и машиностроения, на часовом, швейном производстве, в сфере управления и т.д.
  121-150 ккал/ч (140-174 Вт) Работы, производимые сидя, стоя или связанные с ходьбой и сопровождающиеся некоторым физическим напряжением (ряд профессий в полиграфической промышленности, на предприятиях связи, контроллеры, мастера в различных видах производства и т.п.)
Физическая средней тяжести 151-250 ккал/ч (175-232 Вт)  
  151-200 ккал/ч (175-232 Вт) Работы, связанные с постоянной ходьбой, перемещением мелких ( до 1кг ) изделий или предметов в положении стоя или сидя и требующие определенного физического напряжения (ряд профессий в механосборочных цехах машиностроительных предприятий, в прядильно-ткацком производстве и т.п.)
  201-250 ккал/ч (223-290 Вт) Работы, связанные с ходьбой и переноской тяжести до 10 кг и сопровождающиеся умеренным физическим напряжением (ряд профессий в механизированных, литейных, прокатных, кузнечных, термических, сварочных цехах машиностроительных и металлургических предприятий и т.п.)
Тяжелая физическая работа Более 250 ккал/ч (290 Вт) Работы, связанные с постоянными передвижениями, перемещением и переноской значительных ( свыше 10 кг ) тяжестей и требующие значительных физических усилий ( ряд профессий в кузнечных цехах с ручной ковкой, литейных цехах с ручной набивкой и заливкой машиностроительных и металлургических предприятий и т.п.)

 

Постоянное рабочее место – место, на котором работающий находится большую часть своего рабочего времени (более 50% или более 2 ч непрерывно). Если при этом работа осуществляется в различных пунктах рабочей зоны, постоянным рабочим местом считается вся рабочая зона.

Непостоянное рабочее место – место, на котором работающий находится меньшую часть (менее 50% или менее 2ч непрерывно) своего рабочего времени.

В производственных помещениях, где допустимые нормативные величины микроклимата невозможно выдержать по технологическим требованиям или экономически нецелесообразно, условия микроклимата следует рассматривать как вредные и опасные.

В этих случаях используются защитные мероприятия, например, системы местного кондиционирования воздуха, спецодежда, оборудуются помещения для отдыха и обогрева, регламентируется рабочее время, т.е. устанавливаются перерывы в работе, сокращается продолжительность работы, увеличивается отпуск, уменьшается стаж работы и т.д.

Для оценки общего воздействия параметров микроклимата на возможность перегрева работающих рекомендуется использовать интегральный показатель тепловой нагрузки среды (ТНС), который является эмпирическим показателем, характеризующим общее воздействие на человека температуры, относительной влажности, скорости движения воздуха и теплового облучения.

ТНС-индекс рассчитывается по уравнению:

 

ТНС=0, 7tвл+0, 3tш, (3.1)

где tвл – температура влажного термометра, 0С; tш – температура внутри зачерненного шара, 0С.

tвл определяется аспирационным психрометром; tш измеряется термометром, резервуар которого помещен в центр зачерненного шара. Эта температура отражает влияние температуры воздуха, температуры поверхностей и скорости движения воздуха.

Рекомендуемые значения ТНС-индекса приведены в табл. 3.5.

 

Таблица 3.5

Категория работ по уровню энерогозатрат Величина интегрального показателя, 0С
1а ( до 139 Вт ) 1б ( 140 - 174 Вт) 2а ( 175 - 232 Вт) 2б ( 233 - 290 Вт) 3 ( более 290 Вт) 22, 2 - 26, 4 21, 5 - 25, 8 20, 5 - 25, 1 19, 5 - 23, 9 18, 0 - 21, 8

 

Наиболее точным прибором для измерения относительной влажности является аспирационный (вентиляционный) психрометр (рис. 3.1). В его состав входят: два термометра 1 и 2, которые защищены с боков от теплового излучения и механических повреж­дений никелированными желобками. Резервуары термометров окружены двойными никелированными гильзами (трубками) 4 и 5, через которые с по­стоянной скоростью (4 м/с) проходит воздух. Перемещение воздуха достигается при помощи вентилятора 6 и соединительной трубки 7. Вентиля­тор приводится в действие пружиной, которая заводится ключом 8, наличие у психрометра металлических трубок 4, 5 с воздушной прослойкой между ними предохраняет резервуары термометров от теплового излучения, а относительно большая скорость движения воздуха около резервуара сокращает время на установление температурного равновесия и обеспечивает стабильный режим испарения, независимо от скорости движения окружающего воздуха. При по­мощи психрометров определяется относительная влажность воздуха при температурах до - 5°С. Если температура ниже, то применяют гигрометры.

Рис. 3.1. Аспирационный психрометр

 

Скорость воздушного потока определяется чашечными и крыльчатыми анемометрами.

Крыльчатый анемометр состоит из металлического корпуса, в котором смонти­рованы колесо с лопатками и счетный механизм, соединенный с осью колеса. Счетный механизм имеет несколько стрелок и циферблат, деления которого со­ответствуют метрам пути. Для включения и выключения счетчика имеется рычажок, так называемый арретир. У чашечного анемометра воспринимающей частью является небольшая крестовина с четырьмя полыми полушариями, об­ращенными выпуклыми поверхностями в одну сторону. Крестовина с полушариями под действием воздушного потока движется в сторону выпуклости полушарий. Вращение крестовины передается счетному механизму.

Крыльчатый анемометр применяется при определении скорости воздушного потока от 0, 5 м/с до 16 м/с, чашечный анемометр применяется для измерения скорости воздуха от 9 м/с до 20 м/с. Скорость менее 0, 5 м/с измеряется электроанемометрами.

Контроль микроклимата ведется в соответствии с требованиями Сан ПиН 2.2.4.548-96, для чего применяются термометры, психрометры, анемометры и актинометры.

Температура и относительная влажность измеряется аспирационным психрометрами, скорость движения воздуха – электротермоанемометрами, чашечными и крыльчатыми анемометрами, интенсивность теплового потока – актинометрами.

Актинометры представляют из себя блок термопар, соединенных с гальванометром, который отградуирован в кал/см2× мин или Вт/см2.

Температура поверхности измеряется контактными (типа электрометров) или дистанционными (пирометрами и др.) приборами.

3.2. ОТОПЛЕНИЕ И КОНДИЦИОНИРОВАНИЕ
ПРОИЗВОДСТВЕННЫХ ПОМЕЩЕНИЙ

 

Для поддержания требуемой температуры воздуха в холодный период года в помещениях применяют отопление, которое в зависимости от теплоносителя может быть водяным, паровым и воздушным. Горячая вода на отопление может подаваться от собственной котельной или от центральной котельной. Пар для отопления используют в тех случаях, если он поступает в помещение для технологических потребностей. Воздух нагревается радиаторами или стальными трубами, по которым движется горячая вода или пар. В помещениях с большим пылевыделением применяют трубы, так как их легко очистить от грязи. Нагревательные приборы не должны приводить к испарению ядовитых или пожароопасных веществ. В пожарном отношении водяная система более безопасна, так как температура воды 40-60 °С, а пара – 120-150°С, что в некоторых случаях может привести к самовозгоранию пыли.

Для воздушного отопления применяют калориферы, которые состоят из секций стальных труб или электронагревателей. В первом случае используется тепло пара или воды, во втором – электроэнергии. Вентилятор обеспечивает циркуляцию воздуха через радиатор калорифера, после чего он поступает в помещение. В производствах и складах, где имеются вещества, реагирующие с водой, применяется воздушное отопление электрокалориферами.Для защиты помещения от холодного воздуха около ворот устанавливают тепловые завесы, при этом теплый воздух от калориферов подается вдоль линии ворот.
Назначение установок кондиционирования – поддерживать в заданных пределах метеорологические условия (микроклимат) в помещениях и выполнять некоторые специальные требования. Различают два вида кондиционеров:

* установки полного кондиционирования воздуха, когда в заданных пределах поддерживается температура, относительная влажность, скорость движения воздуха и некоторые особые требования, например дезодоризация (устранение неприятного запаха);

* установки неполного кондиционирования обеспечивают только часть этих параметров.

Кондиционер состоит из следующих основных частей (рис. 3.2.):

I – отделение, где смешивается наружный воздух с рециркуляционным. Рециркуляция применяется при низкой температуре наружного воздуха, при этом воздух из помещения не выбрасывается в атмосферу, а частично поступает, пройдя очистку, обратно в помещение. Рециркуляционный воздух не должен содержать вредных примесей. Поступающий в I отделение воздух очищается фильтром 1 и при необходимости нагревается калорифером 2;

II отделение – промывная камера, где воздух увлажняется, и при необходимости охлаждается распылением вода из форсунок 3;

III отделение второго подогрева, где воздух подогревается калорифером 4 для достижения требуемых значений температуры и относительной влажноcти.

Рис. 3.2. Схема кондиционера

Кондиционирование применяют как для поддержания заданных пределов микроклимата, так и по требованиям технологического процесса, если последние не допускают значительных колебаний температурного режима.

 

3.3. НОРМИРОВАНИЕ И КОНТРОЛЬ ВРЕДНЫХ ВЕЩЕСТВ
НА РАБОЧИХ МЕСТАХ

 

Нормирование вредных веществ ведется в соответствии с ГОСТ 12.1.005-88 «Общие санитарно-гигиенические требования к воздуху рабочей зоны» и ГН 2.2.5.1313–03 «ПДК вредных веществ в воздухе рабочей зоны», где приводятся предельно допустимые концентрации 1307 наименований вредных веществ. Предельно допустимой концентрацией (ПДК) считается такая концентрация, которая в течение всего трудового стажа не вызывает заболеваний или отклонений в состоянии здоровья.

Вредные вещества, выделяющиеся при выполнении производственных процессов, по-разному воздействуют на организм человека, т.е. характер их действия различен. Вещества могут быть: общетоксичные, вызывающие отравление всего организма; раздражающего действия, вызывающие раздражение дыхательных путей; концерогенные, вызывающие раковые заболевания; мутагенные, приводящие к изменению наследственности; вещества, влияющие на репродуктивную (детородную функцию).

Вредные вещества по степени воздействия делятся на следующие классы:

1 – чрезвычайно опасные;

2 – высоко опасные;

3 – умеренно опасные;

4 – мало опасные.

В ГОСТе также указывается агрегатное состояние вещества в условиях производства в виде аэрозоля или пара. Указываются также особенности действия на организм.

Например, ПДК диоксида кремния 1мг/м3.

При одновременном содержании в воздухе рабочей зоны нескольких вредных веществ однонаправленного действия (по заключению Госсаннадзора) сумма отношений фактических концентраций каждого из них ( K1, K2, ... Kn) в воздухе к их ПДК (ПДК1, ПДК2, ... ПДКn) не должна превышать единицы.

 

(3.2)

 

В производстве систематически ведется контроль воздушной среды для определения степени загрязненности газами и аэрозолями. Количество аэрозоля в воздухе (пыли, дыма, тумана) определяется весовым и различными физическими методами. Из физических методов чаще используют световой, когда о количестве аэрозоля судят по ослаблению луча света, проходящего через аэрозоль. Однако в практике, как правило, применяют весовой метод, хотя он наиболее трудоемок и требует значительного времени при небольших концентрациях примеси. При весовом методе определенный объем воздуха протягивается через специальные фильтры и по разнице веса фильтров до и после протяжки воздуха определяют концентрацию аэрозоля.

Газовую составляющую примесей определяют экспрессными и лабораторными методами. При экспрессном методе определенный объем воздуха протягивается через индикаторную трубку, которая заполнена реактивом, изменяющим цвет при взаимодействии с определенным газом, и по длине столба реактива, изменившего цвет, оценивают концентрацию данной примеси. При лабораторных методах определения газовой составляющей используют хроматографы, спектрофотометры, различные специальные приборы.

 

3.4. ВИДЫ ПРОИЗВОДСТВЕННОЙ ВЕНТИЛЯЦИИ

Вентиляция – это организованная подача и удаление воздуха из производственных помещений.

Назначение вентиляции:

- удаление вредных газов, паров, пыли из рабочих помещений;

- удаление избыточных тепло- и влаговыделений, т.е. создание нормального микроклимата;

- подача в помещение и на рабочие места чистого воздуха;

- сбор и утилизация удаляемых из помещения веществ.

По принципу перемещения воздуха вентиляция делится на естественную (аэрация) и механическую. При смешанной вентиляции применяется естественная и механическая вентиляции. По назначению вентиляция делится на приточную и вытяжную. По месту действия вентиляция делится на общую и местную. Общая или общеобменная вентиляция предназначена для обмена воздуха во всем помещении. Местная вентиляция предназначена для удаления загрязненного воздуха непосредственно от источников его образования и подачи чистого воздуха на рабочие места. В производстве, как правило, применяется общеобменная вентиляция, а для удаления пыли от источников образования – местная вентиляция, например при шлифовке, заточке.

Кроме того, применяются воздушные души, воздушные тепловые завесы, местные отсосы, например бортовые отсосы гальванических ванн.

Одной из характеристик вентиляции производственных помещений является кратность воздухообмена, которая определяется по формуле:

 

(3.3)

 

где Vвент – объем воздуха, поданного в помещение вентиляционными системами в течение часа, мЗ/ч; Vпом – объем помещения, мЗ.

Кратность воздухообмена показывает, сколько раз в течение часа меняется весь объем воздуха внутри помещения.

 

Естественная вентиляция

 

Естественное поступление воздуха через не плотности в стенах, оконных переплётах в строительных наружных конструкциях зданий и сооружений, а также через поры материалов называется инфильтрацией воздуха. Естественное удаление воздуха называется эксфильтрацией воздуха. Инфильтрация и эксфильтрация организуют в помещении определенный воздухообмен не обусловленный расчетными данными.

Естественное удаление воздуха из помещения наружу и поступление его внутрь осуществляются под воздействие ветра и разности плотностей наружного и внутреннего воздуха. Разность плотностей создается разностью температур наружного и внутреннего воздуха.

На наветренной стороне здания давление воздуха больше, чем внутри здания и воздух входит в помещение. При обдувании ветром здания, ветер, встречая на своем пути препятствие в виде здания, затормаживается, меняет свое направление и плавно обтекает здание. При этом на заветренной (подветренной) стороне здания и на кровле создается разрежение – пониженное давление. И воздух выходит из помещения.

Таким образом, за счет разницы давлений воздух с наветренной стороны входит во все проемы и во все не плотности в строительных конструкциях в помещение.

Через все не плотности воздух с заветренной стороны здания выходит из помещения наружу.

Такой естественный воздухообмен называется проветриванием (сквозняком) или неорганизованным воздухообменом.

Инфильтрация наружного воздуха повышает затраты на его подогрев.

Эксфильтрация внутреннего воздуха в холодный период года увлажняет наружные ограждения и уменьшает их теплозащитные свойства.

В общем случае естественный воздухообмен в производственных помещениях со значительными избытками явного тепла происходит под влиянием разности температур внутреннего и наружного воздуха и действия ветра.

Организованный естественный воздухообмен называется аэрацией. При аэрации воздухообмены могут достигать в час миллионов кубических метров. В зимний период аэрация позволяет создать 20 – кратный воздухообмен, в теплый период 50 кратный воздухообмен.

Аэрация устраивается в цехах с большими тепло избытками не менее 100 ккал\м3.ч.: мартеновские, прокатные, электросталеплавильные цехи, кузницы, термические, листопрокатные и конвейерные литейные цехи и пр. Ширина цеха не должна превышать80 м.

Аэрация может функционировать с механической вентиляцией: местные вытяжные и приточные установки. Комбинированная аэрация: естественный приток, механическая вытяжка или механический приток, естественная вытяжка.

Аэрация осуществляется через регулируемые отверстия в наружных ограждениях.


 
 

На рис. 31 показана схема аэрации однопролетного цеха.

 

Рис.31. Организация естественного воздухообмена:

а - обтекание здания ветром; б – аэрация однопролётного цеха: 1 - тёплый период года; 2 - холодный период года.

 

В теплый период года, когда среднесуточная температура наружного воздуха выше +10 град., наружный воздух поступает в помещение через проемы в нижней части здания. Расстояние от отметки чистого пола до низа проема не более 1, 8 м.

В холодный период года, когда среднесуточная температура наружного воздуха +10 град. и ниже, наружный воздух поступает в помещения через верхние проемы. В этом случае холодный наружный воздух, поступающий в рабочую зону, нагревается и достигает её с расчётными параметрами.

Удаляется воздух из цеха через отверстия в верхней части помещения. Если здание имеет фонарь, то удаляется воздух через фрамуги фонаря. При отсутствии на здании фонаря для удаления воздуха устраиваются вытяжные шахты либо устанавливаются крышные вентиляторы. Воздух также может удаляться через дефлекторы.

Под действием ветра воздух, поступающий в здание с наветренной стороны, опрокидывает из верхней зоны в рабочую зону циркуляционные потоки, вобравшие в себя тепло, пыль, газы: при этом санитарно-гигиенические показатели в рабочей зоне ухудшаются.

Для регулирования естественного воздухообмена в зависимости от направления и действия ветра площади приточных и вытяжных отверстий следует регулировать, что с эксплуатационной точки зрения не представляется возможным.

Для предотвращения задувания ветром помещения перед вытяжными отверстиями на фонаре устанавливаются ветрозащитные щиты. Щит, установленный перед отверстием фонаря, создаёт разряжение на его створках и воздух при всех случаях выходит из помещения.

Разработаны также не задуваемые фонари, например, фонарь конструкции В.В.Батурина.

Рис. 32. Фонарь конструкции В.В.Батурина

 

При аэрации естественный воздухообмен обусловливается разностью плотностей наружного и внутреннего воздуха. Наружный воздух, как более плотный, входит в помещение через нижние отверстия. Нагревается в помещении и удаляется из него через верхние отверстия.

Над любым источником тепла возникает тепловая струя. Воздух, прилегающий к источнику, нагревается от него и поднимается вверх. Взамен воздуха, поднявшегося вверх, на его место к источнику тепла непрерывно подтекают новые объемы воздуха. Над источником тепла формируется тепловая струя, устремленная вверх помещения. Тепловая струя достигает потолка и расстилается по нему во все стороны.

В помещение, с одной стороны, поступают приточные струи, с другой стороны возникают конвективные струи над источниками тепла. В помещение возникает циркуляция воздушных потоков.

В результате охлаждения и для питания тепловых и приточных струй часть воздуха возвращается из верхней зоны вниз, а часть, равная притоку удаляется наружу.

Установлено, что если у помещения демонтировать потолок, то и в этом случае воздух из верхней зоны будет возвращаться в нижнюю для питания струй и полностью выходить из помещения не будет.

На рисунке представлены картины течения при аэрации одно, двух и трех пролетного цехов. В двух пролетном цехе наружный воздух поступает в цех через боковые отверстия, взаимодействует с конвективными потоками и выходит через отверстия в фонаре.

В трех пролетном цехе, из которых средний цех холодный и имеет более низкую высоту, воздух поступает в средний пролет и распределяется по горячим пролетам. Удаляется воздух через отверстиях в фонарях горячих цехов.

 

Рис. 33. Движение воздушных потоков при аэрации:

а- одно пролетный цех; б – двух пролетный цех; в- трех пролетный цех.

 

Вместе с тем имеет место и другая качественная картины естественного воздухообмена, в частности, И.А.Шепелёва (Рис 34).

В аэрируемом помещении происходит расслоение воздуха по высоте. Возникают две зоны: нижняя, питаемая холодным наружным воздухом, и верхняя, питаемая конвективными потоками, восходящими над нагретым оборудованием. Возникающее расслоение воздуха получение название «температурного перекрытия». На уровне температурного перекрытия возникают скачки температур и концентраций. Причиной возникновения перекрытия является встречное движение воздушных фронтов: фронта приточных струй и фронта тепловых струй. В объеме каждой из зон происходит автономная циркуляция.

Уровень температурного перекрытия обусловливается размерами вытяжных и приточных аэрационных отверстий, т.е. воздухообменом. С уменьшением площади аэрационных проёмов (с уменьшением воздухообмена) высота температурного перекрытия снижается до уровня расположения тепло источника. С увеличением площади проемов (с увеличением воздухообмена) высота температурного перекрытия увеличивается и может достигнуть уровня верхних вытяжных проемов.

Впервые наблюдал явление температурного перекрытия и дал это название Е.В.Кудрявцев (частичная вентиляция промышленных и общественных помещений. Известия АН СССР.1948.№3).Температурное перекрытие моделировал и В.В.Батурин при изучении аэродинамики цеха электролиза алюминия


 

Рис. 34. Схема температурного перекрытия

Механическая вентиляция

При механической вентиляции воздухообмен достигается разностью давлений, создаваемых вентиляторами. Основные элементы механической вентиляционной системы: устройство для отбора наружного воздуха (шахта), воздуховоды, вентиляторы, газо- и пылеочистные установки.

Воздухозаборные устройства размещают там, где воздух наиболее чистый: на стене здания, на некотором расстоянии от стены или на крыше здания.

Воздуховоды, обычно цилиндрические, выполняются из стального листа. На фланцах, где стыкуются секции воздуховода, ставятся резиновые прокладки.

Вентиляторы делятся на два основных типа: осевые и радиальные (центробежные). В осевых вентиляторах воздух перемещается вдоль оси крыльчатки. Преимущества осевого вентилятора – компактность и возможность реверса, т.е. изменения направления воздушного потока. В центробежных вентиляторах лопасти турбины отбрасывают воздух к стенкам вентилятора, откуда он через патрубок поступает в воздуховод. Преимущество радиальных вентиляторов – более высокая производительность по сравнению с осевыми.

 

ОЧИСТКА ГАЗОВЫХ ВЫБРОСОВ

Существующие методы очистки промышленных выбросов воздуха можно классифицировать следующим образом:

1. Гравитационное осаждение.
2. Сухое инерционное и центробежное улавливание.
3. Мокрое пылеулавливание.
4. Электростатическое осаждение.
5. Фильтрация.
6. Звуковая и ультразвуковая коагуляция.

Как правило, в очистных установках реализуется несколько методов пылеулавливания. Гравитационное осаждение – сравнительно мало распространенный метод, так как требует значительных производственных площадей под оборудование. Инерционное осаждение основано на стремлении частиц пыли сохранять первоначальное направление движения при изменении направления потока. При центробежном улавливании частицы пыли стремятся удалиться от центра вращения. На этом принципе работают широко применяемые циклоны. Принцип мокрого пылеулавливания применяется как дополнение к гравитационному, инерционному и центробежному способу очистки. В этом случае более крупные капли воды поглощают мелкие и крупные частицы пыли, смывая их в осадок. Электростатическое осаждение основано на том, что электрические поля высокого напряжения сообщают частицам заряд, под действием которого частицы перемещаются к противоположно заряженному электроду и оседают. Метод фильтрации основан на разделении газа и дисперсной фазы при прохождении через пористую преграду. Звуковая и особенно ультразвуковая обработка выбросов способствует передаче энергии движущимся частицам, повышает их энергию, увеличивает число соударений и способствует коагуляции частиц, что упрощает последующее пылеотделение.

Основной характеристикой пылеочистных аппаратов является эффективность пылеулавливания, т.е. степень очистки, которой называется отношение веса пыли, уловленной аппаратом, к весу поступившей в него пыли за то же время.

Степень или коэффициент очистки Е определяется уравнением:

(3.5)

 

где К1 – начальная концентрация пыли, мг/м3; К2 – конечная концентрация пыли, мг/м3.

Коэффициент очистки зависит от вида пылеочистного устройства, вида и дисперсности пыли. Особенно большое значение имеет фракционный состав пыли, так как с увеличением мелких фракций ухудшается эффективность работы очистителя. Поэтому введено понятие фракционной эффективности, как отношения весов уловленной и поступившей пыли данной фракции. Этот коэффициент имеет большое значение, так как определяет работу аппаратов с пылями различного фракционного состава.

При сравнении работы двух пылеуловителей, работающих в одинаковых условиях, но имеющих разную эффективность, например 85% и 95%, можно считать, что второй работает эффективнее на 10%, но если пересчитывать на загрязнение атмосферы, то окажется, что второй в три раза эффективнее первого, так как

 
 

 


Характеристика пылеуловителя должна включать не только коэффициент очистки, но и фракционную степень очистки, при этом необходимо знать кривую распределения пыли, отнесенную к размерам частиц или скоростям седиментации (осаждения), химический анализ пыли, влажность и т.д.


 

ПЫЛЕОЧИСТНЫЕ УСТАНОВКИ

 

Наиболее простым аппаратом является пылеосадительная камера, работающая на гравитационном принципе (рис. 3.5).

 

Рис. 3.5. Пылеосадительная камера Рис. 3.6. Лабиринтная пылеосадительная

камера

 

Недостаток этих устройств – большая занимаемая площадь и невысокая эффективность очистки. С целью сокращения площади и повышения эффективности применяют пылеосадительные камеры лабиринтного типа (рис. 3.6).

Камеры лабиринтного типа имеют перегородки, которые заставляют поступающий газ периодически менять направление. Следовательно, в этих камерах в дополнение к гравитационному принципу очистки добавляется инерционный.

Основным условием хорошей работы пылеосадительной камеры является равномерное движение газа через камеру, так как всякое увеличение скорости будет способствовать выносу частиц пыли из камеры. Для предупреждения этого явления перед входом в камеру устанавливают сетки, перегородки и т.д.

 

Следует отметить, что воздуховоды с небольшой скоростью движения также работают как пылеосадительные камеры, поэтому для лучшей очистки их следует располагать наклонно. Пылеосадительные камеры просты в изготовлении, требуют незначительных эксплуатационных затрат, потеря давления воздушного потока вследствие малой скорости незначительна, но из-за невысокой эффективности их применяют для предварительной очистки.

В инерционных пылеосадителях воздушной поток резко изменяет направление движения. Инерционные камеры различной конструкции при-ведены на рис. 3.7.

а) б)

 

Рис. 3.7. Инерционный пылеосадитель

 

Эффективность инерционных пылеосадителей невелика, поэтому их так же, как и пылеосадительные камеры, применяют для предварительной очистки с последующей очисткой в каком-либо другом аппарате.

Центробежные пылеосадители – циклоны наиболее широко применяются в промышленности.

Преимущества циклонов заключается в высокой эффективности очистки и сравнительно небольшой занимаемой площади. Схема циклона приведена на рис. 3.8.

Запыленный воздух поступает в верхнюю часть циклона по касательной к цилиндру, и поэтому воздушный поток начинает вращаться. Пылевые частицы

 

центробежной силой отбрасываются к стенкам циклона и ссыпаются в нижнюю часть аппарата, а очищенный воздух удаляется через центральную трубу. Для нормальной очистки воздушному потоку достаточно сделать 3-5 оборотов.

Эффективность удаления пыли увеличивается с уменьшением диаметра циклона, что следует из уравнения:

 
 


(3.6)

 

 

где F – центробежная сила, кг; G – вес частицы пыли, кг; U2 – окружная скорость, м/с; r – радиус вращения, м.

Но уменьшение диаметра циклона приводит к уменьшению его пропускной способности. Поэтому необходимо устанавливать несколько небольших циклонов в один аппарат.

Такие очистные устройства, содержащие несколько циклонов небольшого диаметра, называются мультициклонами (рис. 3.9).

Рис. 3.9. Мультициклон Рис. 3.10. Насадка мультициклона

 

На рис. 3.10. показано устройство небольшого циклона, он содержит спиральную поверхность, проходя которую воздушный поток начинает вращаться, и центральную трубу, через которую удаляется очищенный воздух. Важнейшим условием нормальной работы мультициклона является равномерность подачи воздуха к каждому циклону. Эффективность мультициклона достигает 95%. Основным недостатком мультициклонов является то, что они легко забиваются пылью из-за небольшого диаметра циклонов. Поэтому необходимо выдерживать температурный режим, чтобы избежать образования конденсата и налипания пыли. Температура подаваемого на очистку воздуха должна быть на 10 0С ниже температуры циклона, для этого корпус циклона накрывают теплоизоляцией или устанавливают его в теплом помещении. Мокрое пылеулавливание осуществляется в скрубберах.

 

Скруббер – это пылеочистительный аппарат, основанный на взаимодействии очищаемого газа с водой (рис. 3.11).


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 1019; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.118 с.)
Главная | Случайная страница | Обратная связь