Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Шестичленные гетероциклы – азины и их аналоги
Пиридин представляет собой электронный аналог бензола, в котором одна группа СН (метиновая группа) заменена атомом азота. В отличие от пиррола, атом азота в нейтральной молекуле пиридина образует две s- и одну p-связь, т.е. вносит в ароматический секстет один электрон. Неподеленная пара электронов атома азота в сопряжение вступать не может, потому что ось ее орбитали ориентирована в пространстве перпендикулярно осям орбиталей p-электронов атомов углерода. Этот тип атома называется «пиридиновый». Находясь в составе кольца атом азота пиридинового типа не может быть донором, он является акцептором p-электронов, так как азот более электроотрицателен, чем углерод. Это иллюстрируют канонические структуры пиридина: Индуктивный и мезомерный эффекты атома азота в пиридине действуют в одном направлении (-I- и –M), смещая электронную плотность к атому азота. Это является причиной того, что на атомах углерода индуцирован частичный положительный заряд и электронная плотность в ядре понижена. Поэтому пиридин относят к типу p‑ дефицитных ароматических гетероциклов. Наибольший положительный заряд сосредоточен в a- и g-положениях. Здесь просматривается аналогия с электронным строением нитробензола, имеющего частичные положительные заряды в орто- и пара-положениях (см. главу Нитросоединения). Атомы кислорода и серы также могут быть атомами «пиридинового» типа. Наличие такого атома в цикле обусловливает существование катионных изоэлектронных аналогов бензола – солей пирилия и тиопирилия. Положительно заряженные атомы кислорода и серы, как и пиридиновый атом азота вносят в p-систему гетерокольца один электрон и обладают неподеленными электронным парами, которые в сопряжении с p-электронной системой кольца участия не принимают. Ввиду того, что электроакцепторные свойства атома с полным положительным зарядом больше, чем нейтрального, соли пирилия и тиопирилия значительно более p-дефицитны, нежели электронейтральный пиридин. Шестичленные гетероциклы с несколькими гетероатомами также более p‑ дефицитны, чем пиридин. Особенно заметно это ощущается тогда, когда атомы азота расположены в b-положении друг к другу, например, в пиримидине и симм-триазине. Причина заключается в том, что в этих случаях каждый гетероатом независимо от другого наводит положительный заряд на одних и тех же атомах углерода, как в случае согласованной ориентации, например, в мета‑ динитробензоле (см. главу Свойства аренов). Из вышеизложенного очевидно, что пиридин, ди- и триазины и, особенно соли пирилия, должны легко вступать в реакции с нуклеофильными реагентами и быть пассивными по отношению к электрофилам. Азолы В молекулах диазолов (пиразола и имидазола) имеются гетероатомы как «пиррольного», так и «пиридинового» типов, в связи с чем соединения такого типа в рамках концепции p-избыточных (пиррол) и p-дефицитных (пиридин) гетероциклов называют p-амфотерными. Среди полярных граничных структур, описывающих состояние молекул имидазола и пиразола, имеются структуры как с положительными, так и с отрицательными зарядами на атомах углерода. В действительности, химическое поведение азолов иллюстрирует их амфотерность – они способны к реакциям и с электрофилами, и с нуклеофилами. в начало страницы Пиррол Основность Неподеленная пара электронов пиррольного азота в значительной степени вовлечена в циклическое p-сопряжение, она малодоступна и поэтому пиррол проявляет весьма низкую основность (pKa сопряженной кислоты = – 3, 8). Расчеты показывают, что среди возможных катионов пирролия термодинамически наиболее выгоден резонансно-стабилизированный катион I – результат протонирования атома углерода в a‑ положениях. N-катион III наименее стабилен, т.к. во-первых, заряд в нем сосредоточен на одном атоме, и, во-вторых, нарушена ароматическая система сопряжения: это – фактически диен. Катион II занимает промежуточное положение. Тем не менее, в кислой среде возможно протонирование всех атомов ядра. Кристаллические соли, соответствующие катионам типа I, могут быть выделены при пропускании сухого HCl через растворы полиалкилпирролов в инертных растворителях. Доказательством образования катиона III является легкий дейтерообмен протона при пиррольном атоме азота в кислой среде. Несмотря на то, что катион III наименее устойчив, он образуется и разрушается быстрее, чем катионы I и II, поэтому NH-протон пиррола дейтерируется быстрее, чем CH-протоны. Это явление называется кинетической основностью. Кинетическая основность азота всегда выше, чем углерода. С-катион II отвечает за процесс полимеризации пиррола в кислой среде, когда образуется полимер переменного строения «пиррол-красный». Механизм первых стадий этой реакции подтверждается строением выделенного тримера. Склонность пирролов к полимеризации под действием кислот накладывает серьезные ограничения на участие пирролов в реакциях с электрофилами, т.к. эти превращения протекают зачастую в кислой среде. Реакции по атому азота Кислотность пиррола (рКа 17, 0) близка к кислотности этанола (рКа 15, 9) и сильные основания способны превратить его пиррил-ион, который представляет собой высоко p‑ избыточный гетероаналог циклопентадиенила. Получаемые действием амидов металлов или щелочных металлов натриевые и калиевые соли пиррола легко взаимодействуют с электрофилами – алкилируются и ацилируются по атому азота, тогда как смешанные N-пиррилмагнийгалогениды (связь N–Mg менее ионная, чем N-Na) реагируют преимущественно по a-положению ядра. Кинетический продукт ацилирования N-ацилпиррол в отсутствии катализатора при нагревании перегруппировывается в более устойчивый термодинамический продукт – 2-ацетилпиррол. Реакции по атомам углерода В нейтральной и кислой среде пирролы почти никогда не реагируют с электрофилами по атому азота. Электрофильная атака направляется, главным образом, в a‑ положения ядра. Это объясняется тем, что образующиеся при этом s-комплексы типа I, как и в случае протонирования, наиболее стабильны среди всех возможных. Нитрование Нитрующая смесь вызывают быстрое разложение пиррола, поэтому для нитрования используют специальные реагенты: ацетилнитрат, приготавливаемый заранее из 70%-ной HNO3 и уксусного ангидрида, либо кристаллический тетрафторборат нитрония в неводных растворителях. Во втором случае (более мягкий реагент) выходы выше. Соотношение a- и b-изомеров составляет примерно 4: 1. Сульфирование Сульфирование пиррола по причине его ацидофобности олеумом невозможно; однако, пиррол-2-сульфокислота образуется с хорошим выходом при использовании комплекса SO3 с пиридином, который называется пиридинсульфотриоксидом. Ацилирование Ацилирование пирролов по атомам углерода, в отличие от бензола, не требует применения катализаторов, используемых обычно в реакции Фриделя-Крафтса. Пиррол настолько активен, что реагирует при нагревании с уксусным ангидридом, при этом легко могут быть получены как 2-ацил-, так и 2, 5-диацилпирролы. Алкилирование пиррола по Фриделю-Крафтсу редко применяется в синтетических целях, т.к. при этом быстро образуются полиалкилпроизводные. Галогенирование Взаимодействие пирролов с молекулярными галогенами приводит, как правило, к замещению всех атомов водорода при свободных С-атомах, в то же время, сульфурилхлорид при охлаждении монохлорирует пиррол в a-положение. Моногалогенпирролы, в отличие от полизамещенных соединений, неустойчивы. Галогенирование пирролов протекает столь активно, что зачастую сопровождается отщеплением заместителей, например, карбоксильной группы. В свою очередь атом галогена, чаще всего иода, легко удаляется при гидрировании. Это позволяет получить незамещенное положение в ядре в том случае, когда более доступным в качестве исходного соединения оказывается замещенный пиррол, например: |
Последнее изменение этой страницы: 2017-03-15; Просмотров: 397; Нарушение авторского права страницы