Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Запоминающие устройства типа EPROM EEPROM.



В репрограммируемых ЗУ типов EPROM и EEPROM (или E2PROM) возможно стирание старой информации и замена ее новой в результате специального процесса, для проведения которого ЗУ выводится из рабочего режима. Рабочий режим (чтение данных) – процесс, выполняемый с относительно высокой скоростью. Замена же содержимого памяти требует выполнения гораздо более длительных операций.

По способу стирания старой информации различают ЗУ со стиранием ультрафиолетовыми лучами (EPROM или в русской терминологии РПЗУ-УФ, т.е. репрограммируемые ПЗУ с ультрафиолетовым стиранием) и электрическим стиранием (E2PROM или РПЗУ-ЭС).

Запоминающими элементами современных РПЗУ являются транзисторы типов МНОП и ЛИЗМОП (добавление ЛИЗ к обозначению МОП происходит от слов Лавинная Инжекция Заряда). МНОП-транзистор отличается от обычного МОП-транзистора двухслойным подзатворным диэлектриком. На поверхности кристалла расположен тонкий слой двуокиси кремния SiO2, далее более толстый слой нитрида кремния Si3N4 и затем уже затвор (рис. 9.7 а). На границе диэлектрических слоев возникают центры захвата заряда. Благодаря туннельному эффекту, носители заряда могут проходить через тонкую пленку окисла толщиной не более 5 нм и скапливаться на границе раздела слоев. Этот заряд и является носителем информации, хранимой МНОП-транзистором. Заряд записывают созданием под затвором напряженности электрического поля, достаточной для возникновения туннельного перехода носителей заряда через тонкий слой SiO2. На границе раздела диэлектрических слоев можно создавать заряд любого знака в зависимости от направленности электрического поля в подзатворной области. Наличие заряда влияет на пороговое напряжение транзистора.

 

а б

Рисунок 9.7 – Структуры транзисторов типов МНОП (а)

и ЛИЗМОП с двойным затвором (б)

 

Для МНОП-транзистора с п-каналом отрицательный заряд на границе раздела слоев повышает пороговое напряжение (экранирует воздействие положительного напряжения на затворе, отпирающего транзистор). При этом пороговое напряжение возрастает настолько, что рабочие напряжения на затворе транзистора не в состоянии его открыть (создать в нем проводящий канал). Транзистор, в котором заряд отсутствует или имеет другой знак, легко открывается рабочим значением напряжения. Так осуществляется хранение бита в МНОП: одно из состояний трактуется как отображение логической единицы, другое – нуля.

При программировании ЗУ используются относительно высокие напряжения, около 20 В. После снятия высоких напряжений туннельное прохождение носителей заряда через диэлектрик прекращается и заданное транзистору пороговое напряжение остается неизменным. После 104...106 перезаписей МНОП-транзистор перестает устойчиво хранить заряд. РПЗУ на МНОП-транзисторах энергонезависимы и могут хранить информацию месяцами, годами и десятками лет.

Перед новой записью старая информация стирается записью нулей во все запоминающие элементы. Тип ЗУ – РПЗУ-ЭС.

Транзисторы типа ЛИЗМОП всегда имеют так называемый плавающий затвор, который может быть единственным или вторым, дополнительным к обычному (управляющему) затвору. Транзисторы с одним плавающим затвором используются в ЗУ типа РПЗУ-УФ, а транзисторы с двойным затвором пригодны для применения как в РПЗУ-УФ, так и в РПЗУ-ЭС. Рассмотрим более современный тип – ЛИЗМОП-транзистор с двойным затвором (рис. 9.7, б).

Принцип работы ЛИЗМОП с двойным затвором близок к принципу работы МНОП-транзистора – здесь также между управляющим затвором и областью канала помещается область, в которую при программировании можно вводить заряд, влияющий на величину порогового напряжения транзистора Только область введения заряда представляет собою не границу раздела слоев диэлектрика, а окруженную со всех сторон диэлектриком проводящую область (обычно из поликристаллического кремния), в которую, как в ловушку, можно ввести заряд, способный сохраняться в ней в течение очень длительного времени. Эта область и называется плавающим затвором.

При подаче на управляющий затвор, исток и сток импульса положительного напряжения относительно большой амплитуды 20...25 В в обратно смещенных р-n переходах возникает лавинный пробой, область которого насыщается электронами. Часть электронов, имеющих энергию, достаточную для преодоления потенциального барьера диэлектрической области, проникает в плавающий затвор. Снятие высокого программирующего напряжения восстанавливает обычное состояние областей транзистора и запирает электроны в плавающем затворе, где они могут находиться длительное время (в высококачественных приборах многие годы).

В EPROM стирание выполняется с помощью облучения кристалла ультрафиолетовыми лучами, ее русское название РПЗУ-УФ (репрограммируемое ПЗУ с УФ-стиранием). В EEPROM стирание производится электрическими сигналами, ее русское название РПЗУ-ЭС (репрограммируемое ПЗУ с электрическим стиранием). Английские названия расшифровываются как Electrically Programmable ROM и Electrically Erasable Programmable ROM. Программирование PROM и репрограммирование EPROM и EEPROM производятся в обычных лабораторных условиях с помощью либо специальных программаторов, либо специальных режимов без специальных приборов (для EEPROM). Память типа Flash по запоминающему элементу подобна памяти типа EEPROM (или иначе E2PROM), но имеет структурные и технологические особенности, позволяющие выделить ее в отдельный вид. Запись данных и для EPROM и для E2PROM производится электрическими сигналами. В ЗУ с последовательным доступом записываемые данные образуют некоторую очередь. Считывание происходит из очереди слово за словом либо в порядке записи, либо в обратном порядке. Моделью такого ЗУ является последовательная цепочка запоминающих элементов, в которой данные передаются между соседними элементами.

Статистические ОЗУ (SRAM).

RAM делятся на статические и динамические. В первом варианте запоминающими элементами являются триггеры, сохраняющие свое состояние, пока схема находится под питанием и нет новой записи данных. Во втором варианте данные хранятся в виде зарядов конденсаторов, образуемых элементами МОП-структур. Саморазряд конденсаторов ведет к разрушению данных, поэтому они должны периодически (каждые несколько миллисекунд) регенерироваться. В то же время плотность упаковки динамических элементов памяти в несколько раз превышает плотность упаковки, достижимую в статических RAM. Регенерация данных в динамических ЗУ осуществляется с помощью специальных контроллеров. Разработаны также ЗУ с динамическими запоминающими элементами, имеющие внутреннюю встроенную систему регенерации, у которых внешнее поведение относительно управляющих сигналов становится аналогичным поведению статических ЗУ. Такие ЗУ называют квазистатическими. Статические ЗУ называются SRAM (Static RAM).

Статические ОЗУ можно разделить на асинхронные, тактируемые и синхронные (конвейерные). В асинхронных сигналы управления могут задаваться как импульсами, так и уровнями. Например, сигнал разрешения работы CS может оставаться неизменным и разрешающим на протяжении многих циклов обращения к памяти. В тактируемых ЗУ некоторые сигналы обязательно должны быть импульсными, например, сигнал разрешения работы CS в каждом цикле обращения к памяти должен переходить из пассивного состояния в активное (должен формироваться фронт этого сигнала в каждом цикле). Этот тип ЗУ называют часто синхронным. Здесь использован термин «тактируемые», чтобы «освободить» термин «синхронные» для новых типов ЗУ, в кот. организован конвейерный тракт передачи данных, синхронизируемый от тактовой системы процессора, что дает повышение темпа передач данных в несколько раз. Динамические ЗУ характеризуются наибольшей информационной емкостью и невысокой стоимостью, поэтому именно они используются как основная память ЭВМ. Т.к. от этой памяти требуется высокое быстродействие, разработаны многочисленные архитектуры повышенного быстродействия, перечисленные в классификации. Статические ЗУ в 4...5 раз дороже динамических и приблизительно во столько же раз меньше по информационной емкости. Их достоинством является высокое быстродействие, а типичной областью использования - схемы кэш-памяти.

 

Динамические ОЗУ(DRAM).

RAM делятся на статические и динамические. В первом варианте запоминающими элементами являются триггеры, сохраняющие свое состояние, пока схема находится под питанием и нет новой записи данных. Во втором варианте данные хранятся в виде зарядов конденсаторов, образуемых элементами МОП-структур. Саморазряд конденсаторов ведет к разрушению данных, поэтому они должны периодически (каждые несколько миллисекунд) регенерироваться. В то же время плотность упаковки динамических элементов памяти в несколько раз превышает плотность упаковки, достижимую в статических RAM. Регенерация данных в динамических ЗУ осуществляется с помощью специальных контроллеров. Разработаны также ЗУ с динамическими запоминающими элементами, имеющие внутреннюю встроенную систему регенерации, у которых внешнее поведение относительно управляющих сигналов становится аналогичным поведению статических ЗУ. Такие ЗУ называют квазистатическими. Статические ЗУ называются SRAM (Static RAM), а динамические – DRAM (Dynamic RAM).

Статические ОЗУ можно разделить на асинхронные, тактируемые и синхронные (конвейерные). В асинхронных сигналы управления могут задаваться как импульсами, так и уровнями. Например, сигнал разрешения работы CS может оставаться неизменным и разрешающим на протяжении многих циклов обращения к памяти. В тактируемых ЗУ некоторые сигналы обязательно должны быть импульсными, например, сигнал разрешения работы CS в каждом цикле обращения к памяти должен переходить из пассивного состояния в активное (должен формироваться фронт этого сигнала в каждом цикле). Этот тип ЗУ называют часто синхронным. Здесь использован термин «тактируемые», чтобы «освободить» термин «синхронные» для новых типов ЗУ, в которых организован конвейерный тракт передачи данных, синхронизируемый от тактовой системы процессора, что дает повышение темпа передач данных в несколько раз. Динамические ЗУ характеризуются наибольшей информационной емкостью и невысокой стоимостью, поэтому именно они используются как основная память ЭВМ. Поскольку от этой памяти требуется высокое быстродействие, разработаны многочисленные архитектуры повышенного быстродействия, перечисленные в классификации. Статические ЗУ в 4...5 раз дороже динамических и приблизительно во столько же раз меньше по информационной емкости. Их достоинством является высокое быстродействие, а типичной областью использования - схемы кэш-памяти.

 

В динамических. ЗУ (DRAM) данные хранятся в виде зарядов емкостей МОП-структур и основой ЗЭ является просто конденсатор небольшой емкости. Такой ЗЭ значительно проще триггерного, содержащего 6 транзисторов, что позволяет разместить на кристалле намного больше ЗЭ (в 4 5 раз) и обеспечивает динамическим ЗУ максимальную емкость. В то же время конденсатор неизбежно теряет со временем свой заряд, и хранение данных требует их периодической регенерации (через несколько миллисекунд).

 

Запоминающие элементы

 

Известны конденсаторные ЗЭ разной сложности. В последнее время практически всегда применяют однотранзисторные ЗЭ – лидеры компактности, размеры которых настолько малы, что на их работу стали влиять даже ачастицы, излучаемые элементами корпуса ИС. Электрическая схема и конструкция однотранзисторного ЗЭ показаны на рис. 9.9.

Рисунок 9.9 – Схема и конструкция запоминающего элемента динамического ЗУ

 

Ключевой транзистор отключает запоминающий конденсатор от линии записи-считывания или подключает его к ней. Сток транзистора не имеет внешнего вывода и образует одну из обкладок конденсатора. Другой обкладкой служит подложка. Между обкладками расположен тонкий слой диэлектрика – оксида кремния SiO2. В режиме хранения ключевой транзистор заперт. При выборке данного ЗЭ на затвор подается напряжение, отпирающее транзистор. Запоминающая емкость через проводящий канал подключается к линии записи-считывания и в зависимости от заряженного или разряженного состояния емкости различно влияет на потенциал линии записи-считывания. При записи потенциал линии записи-считывания передается на конденсатор, определяя его состояние.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-15; Просмотров: 465; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь