Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основное уравнение динамики вращательного движения.



 

О1     ri mi     О2 Рис.13 Вращение твердого тела. Пусть имеется твердое тело произвольной формы (см. рис 13), которое может вращаться вокруг оси О1О2. Разбивая тело на малые элементы, можно заметить, что все они вращаются вокруг оси О1О2 в плоскостях, перпендикулярных оси вращения с одинаковой угловой скоростью w. Движение каждого из отдельных элементов малой массы m описывается вторым законом Ньютона. Для i -го элемента имеем: mi ai = fi1+ fi2 +..... +fiN + Fi, ( 4-4 )

где fik ( k = 1, 2, ...N) представляют собой внутренние силы взаимодействия всех элементов с выбранным, а Fi - равнодействующая всех внешних сил, действующих на i - элемент. Скорость vi каждого элемента вообще говоря может меняться как угодно, но поскольку тело является твердым, то смещения точек в направлении радиусов вращения можно не рассматривать. Поэтому спроектируем уравнение ( 4-4 ) на направление касательной и умножим обе части уравнения на ri:

ri( mi ai )t= ri( ri(fi1)t + ri(fi2)t +..... +ri(fiN)t + ri(Fi)t. ( 4-4a )

В правой части получившегося уравнения произведения типа ri(fi1)t представляют собой (согласно ( 4-3)) моменты внутренних сил относительно оси вращения, т.к. ri и (f i)t взаимно перпендикулярны. Аналогично произведения ri(Fi)t являются моментами внешних сил, действующих на i-элемент. Просуммируем уравнения дви-

1 O1 (f12) f12 r1   g l12     f21 l21 (f21) b. 2 r2 O2 Рис.14. Компенсация моментов внутренних сил. жения по всем элементам, на которые было разбито тело. Сумму моментов внутренних сил можно разбить по парам слагаемых, обязанных своим возникновением взаимодействию двух элементов тела между собой. На рис.14 пред- ставлена пара, состоящая из 1-го и 2-го элементов. Проводя плоскость через линию, соединяющую эти элементы, параллельно оси вращения О1О2, нетрудно заметить, что моменты сил взаимодействия этих элементов равны по величине и противоположно направлены, т.е. они компенсируют друг друга. Действительно, силы f12 и f21 равны между собой; равны и их составляющие (f12) = (f21). Кроме того равны и их плечи [8]( l12= l21 ), т. к. каждое из них перпендикулярно проведенной плоскости. -

Поэтому момен ты сил М1 = ( f12) r1sin(900 - g) = (f12) l12 и M2 = (f21) r2 sin(900 - b) = (f21) l21 равны и противоположно направлены. На основании этого можно сделать вывод, что при сложении всех моментов внутренних сил они попарно уничтожатся. Суммарный момент всех внешних сил обозначим S Мi, где Mi = [ ri Fi].

Левая часть уравнения ( 4-4а ) с учетом (3 -7) представится в таком виде:

= = , ( 4-5 )

где величину принято называть моментом инерции твердого тела относительно заданной оси. Эта величина характеризует распределение массы тела относительно определенной оси. Как следует из определения момента инерции - это величина аддитивная. Момент инерции тела складывается из моментов инерции его отдельных элементов, которые можно рассматривать как материальные точки, т.е.

I = , где ji = mi - момент инерции материальной точки.

При практическом вычислении моментов инерции вместо суммирования используется интегрирование ( суммирование бесконечно малых величин). Если ось, относительно которой вычисляется момент инерции, проходит через центр симметрии тела, то вычисление такого интеграла представляет сравнительно несложную задачу, но в общем случае задачу решить трудно. Для упрощения вычислений полезной оказывается теорема о параллельном переносе осей инерции (теорема Гюйгенса - Штейнера), формулировка которой гласит, что момент инерции относительно любой оси равен сумме момента инерции относительно параллельной оси, проходящей через центр масс, и произведения массы тела на квадрат расстояния между осями, т.е.

Iпроиз = Iцм + m d 2. ( 4-6)

Для некоторых тел правильной формы значение моментов инерции относительно осей, проходящих через центр их симметрии приведены в таблице 2.

Таблица 2.

Форма тела Расположение Величина оси момента инерции Обруч m R2 Цилиндр Шар Примечание: m- масса тела, R - его радиус На основании изложенного уравне-ние (4-4а) с учетом (4-5) приводится к виду: , ( 4-7 ) которое называется уравнением динамики вращательного движения твердого тела или уравнением моментов. Дело в том, что левую часть этого уравнения можно представить по другому, т.к. по аналогии с правой частью величину [riaimi]=[ =

называют изменением момента импульса (радиус ri внесен под знак дифференцирования, т.к. все точки вращаются по окружностям постоянного радиуса ). Если

обозначить [ ri mi vi] = [ri pi] = Li, a cyмму = L, то уравнение (4-7) можно за-

писать так: . ( 4-8 )

                                   
 
   
   
       
 
 
   
 
   
 
   
 

L

 

O mv

r a

A

 

Рис.15.Момент импульса материальной точки.

Рис.15 поясняет определение момента импульса точечной массы относительно точки О, который вычисляется также как момент силы [ ri mi vi] = [ri pi] = Li. Направление момента импульса определяется правилом правого буравчика - вектор r вращается по кратчайшему пути к вектору mv, а направление движения оси буравчика указывает направление вектора L. Момент импульса относительно оси также определяется аналогично моменту силы относительно оси:

L = [ r p ], ( 4-9 )
где значения r и р соответствуют обозначениям рис.12 ( с заменой f на р ). Для вращательного движения точки L = [r mv] = [r mwr] = w mr 2 = w Ii. Для твердого тела L = wI. ( 4-10 )

 


Поделиться:



Последнее изменение этой страницы: 2017-03-16; Просмотров: 480; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь