Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Магнитодвижущая сила сосредоточенной обмотки



 

При анализе МДС обмоток будем исходить из следующего:

а) МДС обмоток переменного тока изменяется во времени и вместе с тем распределена по перимет­ру статора, т. е. МДС является функцией не только времени, но и пространства;

б) ток в обмотке статора синусоидален, а следо­вательно, и МДС обмотки является синусоидальной функцией времени;

в) воздушный зазор по периметру статора по­стоянен, т. е. сердечник ротора цилиндрический;

г) ток в обмотке ротора отсутствует, т. е. ротор не создает магнитного поля.

Рассмотрим двухполюсную машину переменного тока с сосредоточенной однофазной катушкой обмот­ки статора с шагом у1 = τ (рис. 9.1, а). При прохожде­нии тока по этой обмотке возникает магнитный поток, который, замыкаясь в магнитопроводе, дважды пре­одолевает зазор σ между статором и ротором.

В связи с тем что обмотка статора сосредоточе­на в двух пазах, график МДС этой обмотки имеет вид двух прямоугольников: положительного и отри­цательного (рис. 9.1, б). Высота каждого из них Fк соответствует МДС, необходимой для проведения магнитного потока через один воздушный зазор σ , т. е.

Fk = 0, 5 Imax ω k = 0, 5 I1 ω k (9.1)

где I1 — действующее значение тока катушки.

Для сосредоточенной обмотки МДС можно раз­ложить в гармонический ряд, т. е. представить в ви­де суммы МДС, имеющих синусоидальное распре­деление в пространстве:

f(α ) = Fk (cos α - cos3α + cos5α - ± cos υ α ), (9.2)

где α —пространственный угол (рис. 9.1, б).

Из (9.2) следует, что МДС сосредоточенной обмотки стато­ра содержит основную и высшие нечетные гармоники, амплитуды которых обратно пропорциональны порядку гармоники υ.

Мгновенные значения любой гармоники МДС зависят от про­странственного положения ее ординат относительно начала отсче­та пространственного угла α (рис. 9.1, б). Эта зависимость у раз­ных гармоник различна, т. е. гармоники МДС имеют разную периодичность в пространстве, определяемую закономcos υ α . Поэтому гармоники МДС называют пространственными.

Гармоники МДС имеют и временную зависимость, поскольку по катушке проходит переменный ток. Но временная зависимость у всех гармоник одинакова и определяется частотой тока в катушке. Следовательно, все пространственные гармоники пропорциональны sin ω t.

Рассмотренные нами в предыдущих главах гармонические составляющие тока и ЭДС называют временными гармониками. Временная периодичность у этих гармоник определяется номером гармоники (7.6).

 

 

Рис. 9.1. МДС однофазной сосредоточенной обмотки статора

 

Амплитуда первой пространственной гармоники МДС по (9.2)

Fk1 = Fk = I1 ω k = 0, 9 I1 ω k (9.3)

Амплитуда пространственной гармоники υ -гo порядка

Fkv = Fk1 / υ =0, 9 I1 ω k / υ (9.4)

Зависимость МДС любой гармоники от времени и пространственного угла α определяется выражением

fkv = ±Fkv sin ω t cos υ a. (9.5)

С увеличением номера гармоники растет ее пространственная периодичность. Поэтому число полюсов пространственной гармо­ники МДС равно 2pv = 2pυ.

Полезный магнитный поток в машине переменного тока создает основная гармоника МДС, а высшие пространственные гар­моники МДС обычно оказывают на машину вредное действие (действие высших гармоник МДС рассмотрено в последующих главах).

Магнитодвижущая сила распределенной обмотки

 

На рис. 9.2, а показана катушечная группа обмотки статора, состоящая из трех катушек. График МДС основной гармоники каждой из этих катушек представляет собой синусоиду,

максимальное значение которой (Fк1) совпадает с осью соответствующей катушки, поэтому между векторами МДС катушек F1k1, F2k1 и F3k1 имеется пространственный сдвиг на угол γ ', равный пазовому углу смещения катушек обмотки относительно друг друга γ '.

График МДС основной гармоники всей катушечной группы представляет собой также

синусоиду, полученную сложением ординат синусоид МДС катушек, составляющих катушечную группу. Максимальное значение этого графика Fг1 совпадает с осью средней катушки.

 

Рис. 9.2. МДС основной гармоники

распределенной обмотки статора

 

Переходя к векторному изображению гармоник МДС, видим, что амплитуда МДС катушечной группы основной гармоники (рис. 9.2, б) определяется геометрической суммой векторов амплитудных значений МДС катушек: Fr1 = F1k1 + Flk2 + F1k3, т. е. анало­гично определению ЭДС катушечной группы (см. рис. 7.7, б). Раз­ница состоит лишь в том, что векторы ЭДС катушек смещены от­носительно друг друга на γ - угол сдвига фаз этих ЭДС относительно друг друга (временной угол), а при сложении МДС угол γ ' является пространственным углом смещения амплитуд­ных значений МДС катушек (γ ' = γ ).

Если все катушки катушечной группы сосредоточить в двух пазах (γ ' = 0), то результирующая МДС будет определяться арифметической суммой МДС катушек, т.е. Fr1 = Fk1 q1.

Таким образом, распределение катушек в нескольких пазах ведет к уменьшению МДС катушечной группы, которое учитыва­ется коэффициентом распределения обмотки (см. § 7.3). Для МДС основной гармоники это уменьшение невелико, но для высших пространственных гармоник оно значительно.

Амплитуда пространственной гармоники катушечной группы распределенной обмотки

Frv = Fkv q1 kpv = (0, 9/v) I1ω k q1 kpv, (9.6)

где kpv — коэффициент распределения.

Например, амплитуда основной гармоники МДС

Fr1 = Fk1 q1 kp1. (9.7)

Если машина имеет несколько пар полюсов (р > 1), то при q1, равном целому числу, в силу симметрии обмотки график МДС на каждой паре полюсов будет повторяться, поэтому (9.6), выведенное для катушечной группы, справедливо и для МДС фазной об­мотки Fф. Заменим в (9.6) число витков катушки ω k на число витков фазной обмотки ω 1. Для однослойной обмотки при последовательном соединении всех катушек ω 1 = p ql ω k, откуда

ω k = ω 1/ (pq1) (9-8)

Используя (9.6) и (9.8), получим

Fфv=(0, 9/ v) I1 ω 1 kpv / p; (9.9)

для основной гармоники

Fф1 =0, 9 I1 ω 1 kp1 / p (9.10)

Здесь I1 — ток в обмотке фазы. При последовательном соединении всех катушек фазной обмотки I1 = Iк.

Выражение (9.9) справедливо и для двухслойных обмоток, для которых ω 1 = 2p ql ω k, так как число витков в катушке двухслойной обмотки ω к.двухсл., пазовая сторона которой занимает половину паза, в два раза меньше числа витков катушки однослойной обмотки ω k.односл, т. е. ω к.двухсл = 0, 5 ω к.односл.

Выражение (9.9) справедливо также и при параллельном со­единении катушечных групп, когда число последовательно соеди­ненных витков в обмотке фазы уменьшается в а раз, при этом ток в обмотке увеличивается во столько же раз (здесь а — число па­раллельных ветвей в обмотке статора).

Эффективными средствами подавления высших пространст­венных гармоник являются: укорочение шага обмотки (см. § 7.2), применение распределенной обмотки (см. § 7.3) и скос пазов (см. § 7.5). Уменьшение амплитуды основной гармоники МДС обмотки статора учитывается обмоточным коэффициентом коб [см. (7.21)]. Что же касается скоса пазов, то он практически не влияет на величину основной гармоники МДС (см. § 7.5).


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 445; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.021 с.)
Главная | Случайная страница | Обратная связь