Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Актиномицеты и родственные им организмы.



Актиномицеты (устар. лучистые грибки) — бактерии, имеющие способность к формированию на некоторых стадиях развития ветвящегося мицелия (некоторые исследователи, подчёркивая бактериальную природу актиномицетов, называют их аналог грибного мицелия тонкими нитями) диаметром 0, 4—1, 5 мкм, которая проявляется у них в оптимальных для существования условиях. Имеют грамположительный тип клеточной стенки и высокое (60—75 %) содержание ГЦ пар в ДНК.

Наиболее распространены в почве: в ней обнаруживаются представители почти всех родов актиномицетов. Актиномицеты обычно составляют четверть бактерий, вырастающих на традиционных средах при посевах их разведённых почвенных суспензий и 5—15 % прокариотной биомассы, определяемой с помощью люминесцентной микроскопии. Их экологическая роль заключается чаще всего в разложении сложных устойчивых субстратов; предположительно они участвуют в синтезе и разложении гумусовых веществ. Могут выступать симбионтами беспозвоночных и высших растений.

Актиномицеты и родственные микроорганизмы – это особая группа бактерий. Их клетки неправильной формы, имеют тенденцию к ветвлению, вплоть до формирования развитого мицелия. В последнем случае при выращивании актиномицетов на твердых питательных средах различают субстратный и воздушный мицелий. Субстратный мицелий развивается в толще агаризованной среды, над поверхностью которой разрастаются гифы воздушного мицелия. Актиномицеты характеризуются разными способами размножения. Большинство размножаются с помощью спор, образующихся в специальных органах спороношения – спорангиях. Последние различаются строением (длинные или короткие, прямые или спиралевидные с разным числом завитков) и расположением (последовательное, супротивное, мутовчатое и др.).

Актиномицеты – это свободноживущие гетеротрофные микроорганизмы, распространенные повсеместно. Природными субстратами, из которых актиномицеты выделяются в наибольшем числе и разнообразии, являются почвы. В зависимости от типа почвы и экологических условий содержание актиномицетов колеблется от 5 до 70%, составляя около 30% общей численности микроорганизмов в почве. В значительном количестве обнаруживаются актиномицеты в пресных и морских водоемах, а также в их донных отложениях. В воздухе они присутствуют чаще всего в виде спор. Некоторые представители обитают в организме человека и животных и могут вызывать заболевания. Большинство актиномицетов аэробы, встречаются микроаэрофильные и анаэробные формы. В основном это мезофильные микроорганизмы, оптимум размножения которых 23-30  С. Термофилы встречаются редко. Они различны в своих требованиях к субстрату. Одни растут на сложных органических средах, другие – на простых соединениях. наилучшие источники азота для актиномицетов – протеины, пептоны и аминокислоты. Из неорганических источников азота лучше всего они усваивают азот нитратов, но могут использовать аммонийные соли, а некоторые виды – нитриты. Аммоний сульфатов – более подходящий источник азота, чем хлористый аммоний. Актиномицеты разлагают белки, мочевину и более простые соединения. Лучшим источником углеродного питания служит глюкоза, мальтоза, крахмал, глицерин, маннит. Из органических кислот хорошо усваиваются уксусная, лимонная, яблочная, плохо – щавелевая, муравьиная, из спиртов этанол, эритрин и дульцит.

Нокардиоформные актиномицеты

Аэробные организмы, имеющие в цикле развития мицелиальную стадию. Мицелий может распадаться на элементы, образуя цепочки, подобные спорангиям. Настоящих спор нет. Сюда относят род Nocardia, Rhodococcus, способный использовать углеводороды нефти, Promicromonospora, Actinobispora, Oerskovia и др.. деление на роды — по хемотипу клеточной стенки и другим хемотаксономическим признакам.

Роды с многогнездовыми спорангиями

Образующийся мицелий делится на отдельные кокковидные клетки, подвижные у Geodermatophilus и Dermatophilus и неподвижные у Frankia. Франкии — азотфиксирующие симбионты ольхи и других небобовых растений, образующие на их корнях клубеньки. Место обитания: почва, воды и кожа млекопитающих.

Актинопланы

В цикле развития имеют подвижную стадию и стадию образования развитого мицелия, разделенного перегородками. Сапротрофы и факультативные паразиты. Распространены в почве, лесной подстилке, животных останках и воде природных источников, часто развиваясь на пыльце попавших в неё растений. Разделяются на роды по типам спорангиев:

Подвижные споры в спорангиях (Actinoplanes, Ampullariella, Dactylosporangium, Pilimelia)

• Неподвижные споры

• Одиночные (Micromonospora)

o В цепочках (Catellatospora)

o Тип клеточной стенки II (содержит мезо-ДАПК и глицин).

Стрептомицеты и близкие роды

Образуют хорошо развитый воздушный мицелий, не распадающийся в процессе развития на отдельные клетки. Спорангии состоят из прямых или закрученных спиралью цепочек неподвижных спор. Обитают в почве, характеризуются сильной антибиотической и хитиноразлагающей активностью.

Тип клеточной стенки I (содержит L-ДАПК)

Мадуромицеты

Мицелий также не распадается на отдельные клетки. Споры только на воздушном мицелии в цепочках или спорангиях, как подвижные так и нет. Группа плохо изучена и требует ревизии. Образуют короткие цепочки спор (Actinomadura и др.), спорангии с неподвижными (Planomonospora) или подвижными спорами (Streptosporangium).

Типы клеточных стенок II—IV. В гидролизатах целых клеток обнаруживается мадуроза.

Термомоноспоры и близкие роды

Развитый мицелий, споры расположены одиночно, в цепочках или спорангиеподобных структурах. Тип клеточной стенки III (мезо-ДАПК, нет дифференцирующих сахаров).

Род Termoactynomyces

Термоактиномицеты образуют типичные эндоспоры и по этому признаку, а также по строению 16s рРНК должны быть отнесены к бациллам, однако образуют развитый мицелий. Термофилы, способные расти в диапазоне 40—48 градусов по Цельсию.

 

Риккетсии и хламидии.

Риккетсии (лат. Rickettsiae) — семейство бактерий. Названы по имени X. Т. Риккетса (1871—1910), в 1909 впервые описавшего возбудителя пятнистой лихорадки Скалистых гор. В том же году сходные наблюдения были сделаны Ш. Николем и его коллегами при исследовании сыпного тифа. В 1910 Риккетс погиб от сыпного тифа, изучением которого занимался в Мексике. В честь заслуг учёного возбудители этих инфекций были названы «риккетсиями» и выделены в род Rickettsia. Строение. В оптимальных условиях клетки риккетсий имеют форму коротких палочек размером в среднем 0, 2—0, 6 × 0, 4—2, 0 мкм, почти такие же, как и наиболее крупные вирусы (около 0, 3 мкм). Их форма и размеры могут несколько меняться в зависимости от фазы роста (логарифмическая или стационарная фазы). При изменении условий роста они легко образуют клетки неправильной формы или нитевидные. На поверхности мембраны клеточной стенки располагается капсулоподобный слизистый покров и микрокапсула, содержащие группоспецифичный «растворимый» антиген. В клеточной стенке локализуются основные белки, большинство из которых являются видоспецифичными антигенами, а также липополисахарид и пептидогликан. В цитоплазматической мембране преобладают ненасыщенные жирные кислоты, она осмотически активна, имеет специфическую транспортную систему АТФ-АДФ. Нуклеоид клетки риккетсий содержит кольцевую хромосому. Размножаются путем бинарного деления, обладают независимым от клетки-хозяина метаболизмом. Источником энергии у внеклеточных риккетсий служит глутамат. Возможно, что при размножении получают макроэргические соединения из клетки-хозяина. Способны индуцировать свой фагоцитоз эукариотной клеткой. Описаны 4 морфологических типа риккетсий: кокковидные, короткие палочковидные, длинные палочковидные и нитевидные. Жизненный цикл. Жизненный цикл риккетсий имеет две стадии — вегетативную и покоящуюся. В вегетативной стадии микроорганизмы представлены палочковидными, бинарно делящимися и подвижными клетками.Покоящиеся формы риккетсий — сферические и неподвижные клетки, располагающиеся в клетках членистоногих и теплокровных.Репродукция, за исключением одного вида, происходит только в живых клетках, то есть, как и вирусы, риккетсии являются облигатными внутриклеточными паразитами, рост и размножение которых происходят в клетках подходящего хозяина. Паразитируют в цитоплазме и ядре или только в цитоплазме клеток членистоногих и теплокровных животных. Лишь один вид риккетсий (Rochalimaea quintana), вызывающий окопную лихорадку, может расти вне клеток в кишечнике вши, а также в бесклеточной питательной среде. В жизненном цикле большинства риккетсий членистоногие являются первичными хозяевами или переносчиками. Устойчивость. Чувствительны к большинству антибиотиков широкого спектра действия, особенно тетрациклинового ряда. Окрашивание и культивирование. Риккетсии культивируются в желточных мешках куриных эмбрионов, перевиваемых культурах клеток, легких белых мышей.Невозможность культивирования риккетсий обычными микробиологическими методами составляла основную трудность для создания вакцины против сыпного тифа. Эффективные методы культивирования риккетсий в лабораторных условиях вне организма- «хозяина» разработал основатель Пермской школы микробиологии Алексей Васильевич Пшеничнов. Он разработал оригинальный метод заражения кровососущих насекомых на эпидермомембранах для культивирования риккетсий, метод питания кровососущих насекомых дефибринированной кровью через пленку эпидермиса с целью поддержания их жизнедеятельности или заражения риккетсиями в лабораторных условиях.

Разработал среду КЖМ (кровь-желток-молоко) для выращивания риккетсий in vitro. Новые методы культивирования помогли А. В. Пшеничнову в 1942 году создать эффективную вакцину для профилактики сыпного тифа. Широкое применение вакцины позволило предотвратить эпидемию тифа в действующей армии и в тылу во время Великой Отечественной войны.Риккетсии идентифицируют в мазках при окраске по Романовскому—Гимзе, Хименесу, Маккиавелло, Здродовскому, в мазках, обработанных флюоресцирующими и энзим-мечеными антителами. Для первичного выделения риккетсий используют преимущественно взрослых самцов морских свинок и взрослых белых, линейных и бестимусных мышей.

Хламидии — мелкие грамотрицательные кокковидные БАКТЕРИИ, размером 250—1500 нм (0, 25—1 мкм). Хламидии имеют все основные признаки бактерий, как то:

• содержат два типа нуклеиновых кислот — ДНК и РНК (дезоксирибонуклеиновую и рибонуклеиновую кислоты, несущие в себе генетическую информацию и информацию о синтезе белка соответственно);

• рибосомы;

• мурамовую кислоту (это компонент клеточной стенки, аналогичный компоненту клеточных стенок грамотрицательных бактерий).

Хламидии размножаются бинарным делением и чувствительны к некоторым антибиотикам. На основании этих фактов и некоторых других, хламидии, после многочисленных споров (которые, кстати, не прекращаются и поныне) были отнесены учеными мужами к бактериям.Цикл размножения хламидий и вирусов условно можно разделить на раннюю и позднюю фазы (периоды). «Ранний» и «поздний» — удобные термины для описания фаз, приведенных ниже, однако их не следует понимать слишком буквально. Для некоторых этапов эти процессы несколько размыты. Начальным периодом («ранней фазой») считается прикрепление элементарного тельца к поверхности (рецепторам) чувствительных клеток (чувствительными клетками для хламидий являются: цилиндрический эпителий слизистых оболочек, эпителиальные клетки различных органов, клетки ретикулоэндотелия, лейкоциты, моноциты и макрофаги.). Затем хламидии как и вирусы адсорбируются с помощью рецепторов клетки-хозяина: происходит слияние оболочки возбудителя с мембраной клетки, а через 4 часа происходит проникновение лишенной оболочки хламидий (в виде элементарного тела) в цитоплазму клетки хозяина. Хламидии, как и вирусы, образуют цитоплазматические включения. Образование колоний этих микрооргнизмов зависит от одних и тех же факторов в клетке-хозяине. Все изменения и трансформации хламидий, как и вирусов, происходит в цитоплазме, где осуществляются все стадии цикла развития возбудителя. Через 8—10 часов после заражения клеток можно наблюдать подавление синтеза ДНК и РНК в инфицированных клетках. Морфологические изменения, сопровождающиеся подавлением синтеза ДНК, также свойственны хламидиям, как и вирусам.

Далее, в результате контакта между возбудителями (как хламидиями, так и вирусами) и чувствительными к ним клетками наблюдается серия одинаковых для этих микроорганизмов реакций, ведущих к появлению внутри клеток свободно «плавающего» генетического материала возбудителей (провируса и ретикулярного тельца). Так после заражения возникает период эклипса (так называемый скрытый период инфекции) в течение которого инфекционность не обнаруживается. Он продолжается как у вирусов, так и хламидий от 2 до 4 часов. Это латентный период, во время которого не удается выявить образования нового вируса или хламидии. Успех этого цикла развития для вирусов и хламидий зависит от того, выйдут ли микроорганизмы (вернее, их свободно плавающий генетический материал) из этого латентного состояния — смогут ли оказаться инфекционными.По окончании латентного периода наступает стадия, когда у хламидий, как и у вирусов, начинается быстрое созревание и подъем инфекционности. Этот период начинается экспоненциальной фазой (то есть, рост можно описать экспоненциальной кривой), когда инфекционность возрастает с постоянной скоростью, и завершается на фазе снижения скорости прироста инфекционности, которая в конечном итоге достигает максимума. Как оговаривалось выше, подобный цикл развития происходит и у вирусов, и у хламидий. Подводя итог всему сказанному выше, можно сделать следующий вывод: в начале цикла развития — при взаимодействии с клетками — у хламидий и вирусов наблюдаются весьма сходные процессы. Только впоследствии у вирусов сохраняется одна-единственная нуклеиновая кислота до конца цикла репродукции, а у хламидии на поздних стадиях развития появляется вторая (ДНК и РНК). Хламидии, как и вирусы не способны производить собственную АТФ (аденазинотрифосфорную кислоту — другими словами, энергию), так как не имеют собственных митохондрий и живут за счет энергии клетки хозяина, которую они инфицировали. Они подавляют синтез клеточной ДНК и зависят от энергии клетки, которая становится теперь доступной для них. Хламидии, как и вирусы, обладают еще одной общей способностью — выходить из клетки без ее лизиса (разрушения клетки), что является важным фактором, обеспечивающим возможность умеренной инфекции.

 

Микоплазмы. Архебактерии.

Микоплазмы (плевропневмониеподобные микроорганизмы) — прокариотные одноклеточные, грамотрицательные микроорганизмы, не имеющие клеточной стенки, которые были открыты при изучении плевропневмонии у коров. Микоплазмы, по всей видимости, являются наиболее простыми самостоятельно воспроизводящимися живыми организмами, объём их генетической информации в 4 раза меньше, чем у Escherichia coli.Строение. Микоплазмы отличаются от остальных бактерий отсутствием жёсткой клеточной стенки (в результате чего от внешней среды их отделяет лишь цитоплазматическая мембрана) и ярко выраженным полиморфизмом. От вирусов микоплазмы отличаются способностью расти на бесклеточных средах и способностью метаболизировать ряд субстратов. Так, для роста микоплазме необходимы стеролы, например, холестерин. Микоплазмы содержат одновременно ДНК и РНК, а также чувствительны к некоторым антибиотикам.В культуре одного вида можно выделить крупные и мелкие шаровидные, эллипсообразные, дисковидные, палочковидные и нитевидные, в том числе ветвящиеся (из-за этого все микоплазмы одно время причислялись к актиномицетам), клетки. Описаны и разные способы размножения: фрагментация, бинарное деление, почкование. При делении полученные клетки не равноценны по размеру, часто одна из них даже нежизнеспособна. К микоплазмам относятся формы с самыми мелкими из известных клеточных микроорганизмов размерами, в том числе меньше теоретического предела самостоятельного воспроизводства на питательной среде (этот предел для сферических клеток составляет 0, 15—0, 20 мкм а для нитевидных — 13 мкм в длину при 20 нм в диаметре). Экология. Микоплазмы способны расти на широком диапазоне сред: от простых минеральных, до сложных органических, часть — только в организме хозяина. Продукты обмена микоплазм (перекиси, нуклеазы, гемолизины) оказывают разрушающее воздействие на клетку хозяина.Раньше считалось что микоплазмы в основном паразитируют на человеке и высших животных, так Mycoplasma pneumoniae — возбудитель респираторной инфекции, так называемой лёгкой атипичной пневмонии, а три вида микоплазм являются генитальными Mycoplasma hominis, Mycoplasma genitalium и Ureaplasma urealyticum. Сейчас показано что распространение микоплазм в природе и экологическая роль гораздо шире. Они найдены в почве, каменном угле и горячих источниках, обнаружены сапротрофы, симбиотические формы.Разные виды являются либо строгими аэробами, либо облигатными анаэробами. Вызываемые заболевания. Некоторые исследователи считают, что Mycoplasma hominis и Ureaplasma urealyticum ответственны за развитие патологий респираторного и урогенитального трактов, имунной, эндокринной и нервной систем, а также опорно-двигательного аппарата. Другие отрицают существенную роль микоплазм в патогенезе человека.Кроме того, mycoplasma genitalium — паразитическая бактерия, которая живёт в половых и дыхательных системах приматов. Mycoplasma genitalium была впервые выделена из образца отделяемого уретры пациентов с негонококковым уретритом. Она может быть найдена в реснитчатых клетках эпителия мочеполового и дыхательного трактов.

АРХЕБАКТЕ́ РИИ (от греч. archaios — древний и бактерии), группа микроскопических одноклеточных организмов-прокариот, резко отличающихся по ряду физиолого-биохимических свойств от истинных бактерий (эубактерий). Группу архебактерий выделили в 1977. Название говорит о том, что эти организмы в настоящее время многими исследователями считаются древнейшими живыми организмами на Земле. Среди них нет возбудителей инфекционных болезней. Архебактерии существенно отличаются от других микроорганизмов (эукариот и прокариот) по составу и последовательности нуклеотидов в рибосомных и транспортных РНК. Архебактерии разнообразны по типу обмена веществ, физиологическим и экологическим особенностям: среди них встречаются аэробы и анаэробы, хемогетеротрофы и хемоавтотрофы, нейтрофилы и ацидофилы. Некоторые архебактерии (галобактерии) обладают особым типом фотосинтеза, при котором свет поглощается не хлорофиллом, а бактериородопсином. Только некоторым архебактериям свойствен энергетический процесс, в результате которого образуется метан. Описано более 40 видов архебактерий (25 родов), относящихся к 5 различным группам: метанобразующим, сероокиcляющим термоацидофилам, серовосстанавливающим термофилам, галобактериям, термоплазмам.

Некоторые исследователи выделяют архебактерий в самостоятельное царство живых организмов – Archaebacteria, другие рассматривают архебактерий на уровне отдела (Mendosicutes) и класса (Archaeobacteria) царства прокариот.

 

19. Изменчивость микроорганизмов и её виды. Фенотипическая изменчивость. Привести примеры.

Изменчивость представляет собой явление, при котором изменяются отдельные признаки и свойства живого организма в процессе его развития. Изменчивость свойственна каждому виду микробов и возникает в определенных условиях внешней среды или в результате переноса генетического материала от одной клетки к другой.

Существующие формы изменчивости микроорганизмов подразделяются на две группы: первую группу составляет фенотипйческая изменчивость, которая включает модификации, описанные в литературе под названием диссоциации с характерными изменениями морфологических, культуральных, ферментативных и некоторых других биологических свойств микробов; вторую группу составляет генотипическая изменчивость, которая включает: 1) мутации, т. е. наследуемую изменчивость микробов, не связанную с поступлением новой генетической информации, 2) рекомбинации ― наследуемую изменчивость, связанную с поступлением новой генетический информации.

Модификационная изменчивость

Модификации представляют собой фенотипические ненаследуемые изменения, которые возникают у бактерий в результате воздействия факторов внешней среды.

Фенотип ― форма выражения генотипа, проявляющаяся комплексом новых признаков и свойств микроорганизма в определенных условиях внешней среды. Для фенотипа характерны появление нитевидных, шаровидных форм штаммов, образование споры, капсулы и атипичная ферментация углеводов. Примером может служить штамм Е. coli с генотипом 1ас +, который синтезирует фермент р-галактозидазу, катализирующий ферментацию лактозы, но этот генотип проявляется в фенотипе при условии их культивирования на среде с лактозой. Переход типичной формы микробов в атипичные затрудняет микробиологический диагноз болезни.

Впервые сообщения об изменении культуральных свойств микробов появились в работах Поль де Крайфа (1921), наблюдавшего расщепление культуры кроличьей септицемии на вирулентные и авирулентные штаммы. Сущность этого явления состоит в том, что при рассеве на плотной питательной среде бактериальной культуры из одного типичного штамма (вида) в основном появляются два типа колоний, отличающихся друг от друга определенными формами. S-форма (гладкая) является нормальным типом колоний для многих грамотрицательных бактерий, кишечной и других групп; R-форма (шероховатая)― измененный тип колоний. Бактерии кишечно-тифозно-дизентерийной группы вирулентны в S-форме колоний, а в R-форме не обладают вирулентными свойствами. Бактерии чумы, туберкулеза, сибирской язвы вирулентны в R-форме, а бруцеллы ― в S-форме.

В условиях культивирования микробов возможен переход от S-формы к R-форме. При этом капсульные бактерии теряют капсулы, лишаются биохимической активности и становятся неполноценными в антигенном отношении, приобретая неспецифические антигены. Подвижные бактерии теряют жгутики.

Переход S-формы в R-форму происходит в основном через промежуточные О- и слизистые М-колоиии. В процессе расщепления культур еще наблюдаются карликовые (D-dwarf), G-колонии (gonidial), появляющиеся как дочерние колонии на поверхности или на краю нормально развивающихся.

В условиях нарушения температурного режима, старения культуры, повышенной концентрации солей, применения антибиотиков и'фагов понижается вирулентность, изменяются антигенные и иммуногенные свойства, появляются антибиотикоустойчивые и фагоустойчивые штаммы, аэробы становятся факультативными анаэробами, утрачивают некоторые имеющиеся ферменты или приобретают новые ферменты. Если культивировать кишечные палочки па среде с добавлением лактозы, то у нее появляется новый, фермепт р-галактоза. Изменение метаболизма у бактерий можно вызвать ультрафиолетовым облучением и рентгеновскими лучами. Изменяя параметры среды обитания, можно установить пределы и границы отклонения микробных клеток. Таким образом, широк диапазон феиотипических изменений. В основе этих изменений лежит прежде всего приспособительная активность обменных функций. Адаптация – это закон живого, и по этому закону живут и развиваются микроорганизмы.

1 Историческое наблюдение и экспериментальные исследования показывают, что наследственность и изменчивость представляют собой как бы две стороны одного и того же явления, т. е. в природе происходит закономерный процесс не только изменчивости, по и передачи наследственных свойств. Живой организм, находясь в условиях внешней среды, в одном случае приспосабливается к новым условиям, изменяя свой обмен веществ, а в другом ― погибает, если происходит резкое изменение внешней среды.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 73; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь