Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Спонтанные мутации. Обратные мутации ( реверсии ).



К появлению спонтанных мутаций приводят ошибки репликации, неправильное формирование комплиментарных пар оснований или структурные искажения ДНК под действием естественный мутагенов. Спонтанные мутации могут вызывать благоприятные и неблагоприятные генетические изменения. Примерный уровень спонтанного мутирования — одна мутация на каждые 106-107 клеток. Численная доля мутантов в клеточной популяции для разных признаков различна и может варьировать от 10-4 до 10-11.

Для конкретного гена частота мутирования составляет величину порядка 10-5, а для определённой пары нуклеотидов 10-8. Например, если на среду с антибиотиком посеять миллион бактерий, можно ожидать, что в результате спонтанной мутации одна колония выживет.

• Несмотря на то что уровень мутаций в популяции бактерий для отдельных клеток кажется незначительным, нужно помнить, что популяция бактерий огромна, и они размножается быстро. Следовательно, уровень мутаций с точки зрения целой популяции довольно значителен. Кроме того, появившиеся спонтанно и устойчивые к действию какого-либо антибиотика мутанты имеют при размножении преимущество по сравнению с «диким» типом бактерий и быстро образуют устойчивую популяцию.

• Обратные мутации (реверсии) возвращают спонтанно мутировавшую клетку к исходному генетическому состоянию. Их наблюдают с частотой одна клетка на 107-108 (то есть по меньшей мере в 10 раз реже, чем прямые спонтанные мутации).

В современной учебной литературе используется и более формальная классификация, основанная на характере изменения структуры отдельных генов, хромосом и генома в целом. В рамках этой классификации различают следующие виды мутаций:

геномные;

хромосомные;

генные.

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения первичной структуры ДНК генов под действием мутаций менее значительны, чем при хромосомных мутациях, однако генные мутации встречаются более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точковые мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Возможны четыре генетических последствия точковых мутаций: 1) сохранение смысла кодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две категории: мутации типа замен пар оснований и типа сдвига рамки считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Мутагены (от мутация и др.-греч. γ ε ν ν ά ω — рождаю) — химические и физические факторы, вызывающие наследственные изменения — мутации. Впервые искусственные мутации получены в 1925 году Г. А. Надсеном и Г. С. Филипповым у дрожжей действием радиоактивного излучения радия; в 1927 году Г. Мёллер получил мутации у дрозофилы действием рентгеновских лучей. Способность химических веществ вызывать мутации (действием иода на дрозофилы) открыта И. А. Рапопортом. У особей мух, развившихся из этих личинок, частота мутаций оказалась в несколько раз выше, чем у контрольных насекомых.

Мутагенами могут быть различные факторы, вызывающие изменения в структуре генов, структуре и количестве хромосом. По происхождению мутагены классифицируют на эндогенные, образующиеся в процессе жизнедеятельности организма и экзогенные — все прочие факторы, в том числе и условия окружающей среды.

По природе возникновения мутагены классифицируют на физические, химические и биологические:

Физические мутагены

ионизирующее излучение;

радиоактивный распад;

ультрафиолетовое излучение;

моделированное радиоизлучение и электромагнитные поля[1][2];

чрезмерно высокая или низкая температура.

Химические мутагены

окислители и восстановители (нитраты, нитриты, активные формы кислорода);

алкилирующие агенты (например, иодацетамид);

пестициды (например гербициды, фунгициды);

некоторые пищевые добавки (например, ароматические углеводороды, цикламаты);

продукты переработки нефти;

органические растворители;

лекарственные препараты (например, цитостатики, препараты ртути, иммунодепрессанты).

К химическим мутагенам условно можно отнести и ряд вирусов (мутагенным фактором вирусов являются их нуклеиновые кислоты — ДНК или РНК).

Биологические мутагены

специфические последовательности ДНК — транспозоны;

некоторые вирусы (вирус кори, краснухи, гриппа);

продукты обмена веществ (продукты окисления липидов);

антигены некоторых микроорганизмов.

Развитие генетики, открывшей методы получения наследственно изменённых форм микроорганизмов, расширило возможности использования микроорганизмов в сельском хозяйстве, промышленном производстве, медицине. Основной метод – индуцированное получение мутантов воздействиями мутагенов (излучение, химическими веществами) на дикие, существующие в природе культуры микроорганизмов. Таким методом удаётся создать мутанты, которые дают в десятки и сотни раз большее количество ценных продуктов (антибиотиков, ферментов, витаминов, аминокислот и т.д.).

 

 

Рекомбинации – обмен генетической информацией. Механизмы рекомбинаций у прокариот. Трансформация. Открытие явления трансформации. Опыты М. Гриффитса. Механизмы.

Рекомбинация — процесс обмена генетическим материалом путем разрыва и соединения разных молекул. Рекомбинация происходит при репарации двунитевых разрывов в ДНК и для продолжения репликации в случае остановки репликационной вилки у эукариот, бактерий и архей. У вирусов возможна рекомбинация между молекулами РНК их геномов. У прокариот — конъюгация, трансформация и трансдукция, а у вирусов — совместная инфекция.

Конъюга́ ция (от лат. conjugatio — соединение), парасексуальный процесс — однонаправленный перенос части генетического материала (плазмид, бактериальной хромосомы) при непосредственном контакте двух бактериальных клеток. Открыт в 1946 году Дж. Ледербергом и Э. Тайтемом. Имеет большое значение в природе, поскольку способствует обмену полезными признаками при отсутствии истинного полового процесса. Из всех процессов горизонтального переноса генов конъюгация позволяет передавать наибольшее количество генетической информации.

Трансформация – направленный перенос и встраивание в генетический аппарат клетки небольшого фрагмента чужеродной ДНК. Она происходит без участия вирусов – бактериофагов. Наблюдается лишь у немногих бактерий. Посредством генетической рекомбинации часть трансформирующей молекулы ДНК может обмениваться с частью хромосомной ДНК донора. Трансформацию используют также в экспериментах для определения порядка генов, расстояний между ними в молекулах ДНК и построения генетических карт. Известно, что бактерия Pneumococcus pneumonie имеет несколько форм. Вирулентность ее определяется наличием мукополисахаридной капсулы на поверхности клетки, которая защищает бактерию от воздействия со стороны организма – хозяина. Капсула – слой полипептидов или полисахаридов, липидов или гетерополисахаридов и до 90% воды, расположенных поверх клеточной стенки и выполняющий функции осмотического барьера, защиты от высыхания и механических повреждений. В результате размножившиеся бактерии убивают зараженное животное. Бактерии этого штамма (S-штамм) образуют гладкие колонии. Авирулентные формы не имеют защитной капсулы и образуют шероховатые колонии (R-штамм). Микробиолог Ф. Гриффитс в 1928 году инъецировал мышам культуру живого пневмококка R-штамма вместе с S-штаммом, убитым высокой температурой равной 65 градусов Цельсия.

Спустя некоторое время ему удалось выделить из зараженных мышей живые пневмококки, обладающие капсулой. Таким образом, оказалось, что свойство убитого пневмококка – способность образовывать капсулы – перешло к живой бактерии, то есть, произошла трансформация этих клеток. От этого превращения клеток и возник сам этот термин. Поскольку признак наличия капсулы является наследственным, то следовало предположить, что какая-то часть наследственного вещества от бактерий штамма – S перешла к клеткам штамма – R. В 1944 году О. Эвери, К. Мак – Леод и М. Мак-Карти показали, что такое же превращение типов пневмококков может происходить в пробирке in vitro. Эти исследователи установили существование особой субстанции – «трансформирующего принципа» – экстракта из клеток штамма – S, обогащенного ДНК. Как далее выяснилось, ДНК, выделенная из клеток S-штамма и добавления в культуру R-штамма, трансформировала часть клеток в S-форму. Клетки стойко передавали это свойство при дальнейшем размножении. Обработка трансформирующего фактора ДНК-азой – ферментом, разрушающим ДНК, блокировала трансформацию. Открытие этого явления было первым прямым доказательством того, что генетическим материалом является именно ДНК (а не белки, как предполагалось ранее).Известны два типа бактериальной трансформации: естественная, например у Bacillus subtilis, и индуцированная, которая связана с тем, что бактериальная клетка специально готовится к процессу переноса ДНК, то есть она приобретает компетентность к трансформации.Весь процесс можно разделить на несколько стадий. Контакт с поверхностью клетки. Проникновение ДНК в клетку. Соединение трансформирующей ДНК с соответствующим фрагментом хромосомы реципиента. Репликация включенной в хромосому новой информации.Трансформацию наблюдали у многих бактерий, в частности у представителей родов Bacillus, Rhizobium, Streptococcus.Компетентные клетки несут на поверхности новый антиген. Называемый фактором компетентности. При добавлении факторов компетентности в культуру бактериальных клеток изменяются клеточная стенка и цитоплазматическая мембрана. Стенка становится более пористой. Дополнительные впячивания мембраны внутрь клеток обеспечивают приближение присоединенного к ней нуклеоида к клеточной поверхности, что облегчает взаимодействие между донорной и реципиентной ДНК.

Условиями, существенными для присоединения ДНК к компетентным клеткам, являются ее размеры (молекулярная масса не менее 3*10^5 и интактность двуцепочечной структуры). По этим причинам ДНК, разрушенная ДНК-азой, не обладает трансормирующей активностью. Увеличить компетентность можно обработкой некоторыми химическими агентами или воздействием сильным электрическим полем (электропорация). В ходе трансформации одна из двух цепей ДНК деградирует и в клетку проникает другая, которая спаривается с гомологичным цчастком ДНК в реципиентной клетке, с цепью, являющейся комплементарной ей. Затем в результатае двойного кроссинговера между однонитчатой донорной ДНК и двунитчатой ДНКреципиента происходит образование рекомбинантной хромосомы реципиента. При этом у участке ДНК, ограниченном сайтами кроссинговера, одна нить ДНК имеет реципиентный сегмент, а вторая – донорный. Такие районы ДНК с различающимися последовательностями нуклеотидов в двух нитях называют гетеродуплексами. Уже после первого раунда репликации ДНК образуются два типа клеток: исходные и трансформированные, которые несут ДНК донора. Первые стадии трансформации – присоединение ДНК к клеточной оболочке, ее поглощение и деградация одной цепи – осуществляются с равной эффективностью независимо от ее гомологии с ДНК реципиента.Однако, процесс рекомбинации специфичен в отношении гомологичной ДНК и с негомологичной происходит с очень низкой частотой. Минимальная длина цепочки ДНК, способной интегрироваться в реципиентную хромосому, составляет около 500 пар нуклеотидов. Обычно в рекомбинации участвуют фрагменты донорной ДНК длиной около 200 тысяч пар нуклеотидов, или около 1 /200 всей бактериальной хромосомы.Частота трансформации по хромосомным маркерам зависит от свойств данного препарата ДНК, ее концентрации, состояния клетки реципиента, вида бактерий. У пневмококков при селекции по одиночному маркеру частота трансформации составляет 10^ -2 – 10^ -3 на одну клетку реципиента. У гемофильных бактерий частота трансформации варьирует от 10^ -3 до 10^ -7.

Трансформация, хотя и с очень низкой частотой, может происходить даже между разными видами бактерий, что помогает установить степень родства между ними. ДНК, освобождающееся в окружающуюся среду при лизисе стареющих культур бактерий, в природных условиях обладает трансформирующей способностью. Это значит, что трансформация является одним из природных способов обмена генетическим материалом у бактерий.Очень редко бывает, что единичная бактериальная клетка приобретает в результате трансформации более чем одно новое свойство. Передача через ДНК большего числа признаков наблюдается лишь в том случае, если культура микроба-донора генетически близка к клеткам микроба-реципиетна.С помощью трансформирующей ДНК могут передаваться такие признаки, как капсулообразование, синтез необходимых клетке веществ, ферментативная активность, устойчивость к ядам, антибиотикам и другим лекарственным веществам. Трансформация используется также для генетического картирования у бактерий. Как уже отмечалось, при трансформации в хромосому реципиента встраивается сравнительно небольшой фрагмент ДНК. Если два гена находятся в хромосоме на значительном расстоянии друг от друга, они не могут локализоваться в одном и том же фрагменте, трансформирующий ДНК. Одновременная котрансформация двумя независимыми фрагментами, содержавшими эти гены, - событие крайне мало вероятное. Таким образом, частота котрансформации двух генетических маркеров служи показателем расстояния между ними.

 


Поделиться:



Последнее изменение этой страницы: 2017-03-17; Просмотров: 72; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь