Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Резюме по модульной единице 4.Стр 1 из 11Следующая ⇒
Резюме по модульной единице 4. Аминокислоты – азотсодержащие органические вещества, имеющие аминные и карбоксильные группы, соединённые с алифатическим, ароматическим или гетероциклическим радикалом. В организмах синтезируются и превращаются ферментами L-формы аминокислот. В состав белков входят протеиногенные аминокислоты. Протеиногенные аминокислоты, которые не синтезируются в организмах человека и животных, называют незаменимыми. Аминокислоты в физиологической среде образуют биполярные ионы, которые способны взаимодействовать как с кислотами, так и основаниями. В растениях аминокислоты преставляют собой первичные азотистые вещества, участвующие в синтезе других азотистых соединений. В составе молекул нуклеотидов содержатся остатки азотистых оснований, рибозы или дезоксирибозы, а также ортофосфорной кислоты. В результате присоединения к нуклеотидам дополнительных остатков ортофосфорной кислоты образуются дифосфат- и трифосфатпроизводные нуклеотидов (АТФ, АДФ, ГТФ, ГДФ, УТФ, УДФ, ЦТФ, ЦДФ и др.). Нуклеотиды обладают кислотными свойствами. Из рибонуклеотидов синтезируются рибонуклеиновые кислоты (РНК), макроэргические нуклеозидполифосфаты, коферментные группировки. Из дезоксирибонуклеотидов образуются молекулы дезоксирибонуклеиновой кислоты (ДНК). Белковые молекулы состоят из белковых полипептидов, которые включают остатки протеиногенных аминокислот, соединённых пептидными связями. Пептидные связи образуются в результате взаимодействия карбоксильных и аминных групп, соединённых с a-углеродными атомами. Последовательность соединения аминокислотных остатков в белковых полипептидах называют первичной структурой белков. Она определяется последовательностью кодонов в генах, кодирующих структуру соответствующих белков. В составе белковых молекул чаще всего содержится 100-400 аминокислотных остатков. К белкам относят полипептиды, имеющие в своём составе более 50 аминокислотных остатков. Вторичная структура белков возникает в результате образования водородных связей между группировками атомов, образующих пептидные связи. Различают три разновидности вторичной структуры белков: a-спираль, b-структуры и нерегулярные структуры. Большинство белков образуют смешанную вторичную структуру. В формировании третичной структуры белков важную роль играют водородные связи, электростатические и гидрофобные взаимодействия, которые возникают при взаимодействии радикалов аминокислот. У многих белков образуются также дисульфидные связи, которые участвуют в формировании третичной структуры. Олигомерные белки образуют четвертичную структуру. Пространственную структуру белковой молекулы, которая формируется в физиологической среде и обеспечивает выполнение белком его биологической функции называют нативной конформацией белковой молекулы. Необратимое изменение пространственной структуры белковых молекул, которое сопровождается потерей их нативных свойств, называют денатурацией белков. Денатурация белков происходит под воздействием высокой температуры, сильно кислой или сильно щелочной среды, катионов тяжёлых металлов, органических растворителей и детергентов. Белки разделяют на две большие группы – протеины и протеиды. Молекулы протеинов построены только из аминокислотных остатков, а в состав протеидов, кроме аминокислотных остатков, входят группировки неаминокислотной природы (моносахариды, липиды, нуклеотиды, витамины и др.), атомы металлов, остатки фосфорной кислоты. Белки с оптимальным содержанием незаменимых аминокислот называют полноценными, а белки с пониженным содержанием незаменимых аминокислот – неполноценными. Для характеристики полноценности белков используется показатель – биологическая ценность белков. Генетиками и селекционерами совместно с биохимиками проводится научно-исследовательская работа по созданию генотипов растений с улучшенным аминокислотным составом белков.
Модульная единица 5. Витамины. Цели и задачи изучения модульной единицы. Изучить строение, свойства и биологические функции витаминов. Научить студентов испльзовать сведения о витаминах при оценке качества растительной продукции.
5.1. Строение, свойства и биологические функции витаминов. По современным представлениям к витаминам относятся низкомолекулярные органические вещества довольно разнообразного химического строения, которые строго необходимы для жизнедеятельности организмов в сравнительно малых количествах. Биологическая роль многих витаминов заключается в том, что они в качестве структурных группировок (коферментов) входят в состав активных центров многих ферментов и без них невозможно нормальное осуществление биохимических процессов (см. гл. “Ферменты”). При полном исключении из питания витаминов соответствующие ферменты становятся не способными катализировать биохимические превращения, вследствие чего происходят нарушения обмена веществ, приводящие к серьезным заболеваниям - авитаминозам. При частичном недостатке витаминов понижается активность тех или иных ферментов, в результате снижается скорость определенных биохимических реакций, катализируемых данными ферментами, и тогда наблюдаются нарушения обмена веществ, называемые гиповитаминозами. Растения и природные формы микроорганизмов (за некоторыми исключениями) при нормальных условиях развития способны сами синтезировать необходимые для их жизнедеятельности витамины, тогда как организмы человека и животных такой способностью не обладают и должны постоянно получать с пищей или непосредственно витамины, или их ближайшие биохимические предшественники – провитамины, которые в человеческом и животном организмах легко превращаются в витамины. Однако жвачные животные, имеющие в преджелудках (рубце) обильную микрофлору, в значительной степени удовлетворяют свою потребность в витаминах за счет переваривания клеток отмерших микроорганизмов, содержащих многие витамины. Способность микроорганизмов (бактерий, актиномицетов, дрожжевых клеток) синтезировать большое количество витаминов используется для промышленного получения кормовых и медицинских препаратов, обладающих витаминной активностью. В качестве промышленных продуцентов витаминов обычно применяют специальные отселектированные штаммы микроорганизмов, способные к сверхсинтезу тех или иных витаминов. Изолированные от растений отдельные клетки, ткани и органы также не могут синтезировать многие витамины и при их выращивании в культуре in vitro ( на искусственной питательной среде) необходимо добавление в питательную среду соответствующего комплекса витаминов. Витаминной активностью обладают несколько десятков химических соединений, которые образуют родственные группы, сходные по строению молекул и своему биологическому действию. По мере открытия витаминов их обозначали буквами латинского алфавита. Например, витамин, предохраняющий от заболевания полиневритом, назвали В1, излечива-ющий цингу - С, антирахитический витамин - Д, предохраняющий от заболевания ксерофтальмией - А и.т.д. В соответствии с требованиями современной номенклатуры витамины называют в зависимости от их химического строения. По способности к растворению в жирах или воде все витамины подразделяют на две большие группы - жирорастворимые и водорастворимые. Потребность в витаминах обычно выражают в мг или мкг за 1 сутки, а также в расчете на 1 МДж потребляемой энергии, содержание витаминов - в тех же единицах, но в расчете на 100 г продукта (мг % или мкг %). ЖИРОРАСТВОРИМЫЕ ВИТАМИНЫ. РЕТИНОЛ (витамин А). Ретинол представлен в организме человека и животных двумя витаминами А1 и А2, различающимися химическим строением и биологической активностью, которая значительно выше у витамина А1. В тканях организмов витамин А находится в виде транс-изомеров спирта ретинола, а также в виде эфиров пальмитиновой и других жирных кислот, которые могут накапливаться в большом количестве в запасющих клетках печени. Много этого витамина в молоке (0, 1-0, 5 мг%) и в сливочном масле (1-1, 5 мг%). В большинстве животных продуктов ретинол содержится преимущественно в виде витамина А1, а в печени морских рыб - витамина А2. Превращаясь в альдегидную форму - ретиналь, витамин А участвует в образовании зрительного пигмента родопсина, находящегося в сетчатке глаза - ретине (что и определило название витамина). Весьма характерно, что молекулы ретиналя имеют цис-конфигурацию по двойной связи у 11-го углеродного атома (показана стрелкой), но под воздействием света цис-ретиналь превращается в более устойчивый транс-изомер. При недостатке ретинола не происходит нормального роста организма и формирования эпителиальных тканей внутренних органов, что приводит к поражению слизистых оболочек, при этом появляются характерные симптомы - сухость кожи, задержка роста, низкая сопротивляемость организма инфекции, сухость роговицы глаз (ксерофтальмия), вызывающая ухудшение адаптации к темноте и ослабление зрения (болезнь “куриная слепота”). Среднесуточная потребность человека в витамине А составляет около 1 мг. В организме человека и животных ретинол образуется из растительных продуктов - каротинов, представленных главным образом тремя изомерами -a, b и g - каротинами. Под действием фермента оксигеназы происходит расщепление молекулы каротина по центральной двойной связи с образованием альдегидной формы витамина А- ретиналя. При этом установлено, что каждая молекула b-каротина дает начало двум молекулам витамина А, а a и g - каротинов - по одной молекуле витамина А, в связи с чем b-каротин обладает вдвое большей витаминной активностью. Таким образом, каротины следует рассматривать как провитамины ретинола.
b-каротин (стрелкой показана центральная двойная связь).
Каротины входят в состав хлоропластов листьев и хромопластов не фотосинтезирующих органов растений, их синтез более активно проходит на свету. В составе хлоропластных мембран они выполняют роль дополнительных пигментов при фотохимическом поглощении света. Кроме того, каротины, взаимодействуя с хлорофиллом, находящимся в возбужденном триплетном состоянии, защищают его молекулы от необратимого фотоокисления. А взаимодействуя с молекулами кислорода, находящимися в возбужденном синглетном состоянии, каротин способен переводить их в невозбужденное состояние. b-Каротин также принимает участие в явлениях фототропизма у высших растений. Больше всего каротина содержится в листьях растений и листовых овощах, корнеплодах моркови, рябине, облепихе, абрикосах, томатах и сладком перце. Особенно богата каротином молодая зелень, тогда как в процессе вегетации содержание этого витамина в вегетативной массе растений снижается. В процессе формирования корнеплодов моркови концентрация в них каротина возрастает в 3-5 раз. Значительно возрастает содержание каротина при созревании плодов и овощей. В большинстве растительных продуктов преобладает b-каротин. Содержание каротина в некоторых растительных продуктах следующие, мг %:
Накопление каротина в растительных продуктах зависит от условий выращивания растений. Во многих опытах отмечено, что его содержание в листьях существенно снижается при низком уровне азотного питания растений, а при внесении азотных удобрений может повышаться в 1, 5-2 раза. Высокое содержание каротина в плодах и овощах наблюдается только при оптимальном питании растений макро- и микроэлементами. Каротин разрушается под воздействием ультрафиолетовых лучей и при повышенной температуре в присутствии кислорода, поэтому при сушке вегетативной массы растений на открытом солнце значительная часть его подвергается деградации и наблюдаются значительные потери этого провитамина. Содержание каротина контролируют в кормах, особенно в зимний период. Ежедневные нормы каротина для крупного рогатого скота, свиней, овец и коз составляют 20-30 мг на 100 кг живой массы животных. Курам рекомендуется давать в сутки с кормом 2-2, 5 мг каротина. КАЛЬЦИФЕРОЛ (витамин Д). Представлен группой витаминов, из которых наибольшую биологическую активность имеют эргокальциферол (витамин Д2) и холекальциферол (витамин Д3). Эти витамины синтезируются в организме человека и животных из соответствующих биохимических предшественников - провитаминов под воздействием ультрафиолетовых лучей. Холекальциферол образуется в коже из дегидрохолестерина в результате разрыва связи в одной из его циклических структур (между 9 и 10 углеродными атомами). Синтез эргокальциферола осуществляется из растительного провитамина - эргостерола, поступающего в организм животных или человека как компонент растительной пищи. Много эргостерола содержится в клетках дрожжей.
дегидрохолестерин холекальциферол
эргокальциферол
Функция кальциферола - регулирование метаболизма кальция и фосфора, при этом непосредственно регуляторами биохимических процессов являются гидроксилированные производные витамина Д, имеющие дополнительно две или три гидроксильные группы (диокси- и триоксикальциферолы). При недостатке витамина Д ухудшается усвоение кальция и фосфора в слизистой оболочке кишечника, нарушается развитие зубов и мышечных тканей, в костях снижается содержание кальция, что приводит к деформации костей и заболеванию детей рахитом. В сутки человеку необходимо потреблять около 20 мкг кальциферола, животным- 15-25 мкг на 100 кг живой массы. Важнейшие источники витамина Д для человека в зимний период - печень животных и рыб, яичные желтки, сливочное масло, молоко, а в летнее время - растительные продукты (листовые и другие овощи, плоды), обогащенные эргостеролом, из которого под воздействием солнечных лучей в организме человека образуется эргокальциферол. Потребность сельскохозяйственных животных в кальцифероле в летнее время обеспечивается за счет его синтеза из растительных стеролов, содержащихся в зеленых кормах, а в зимний период - путем добавления в корм облученных ультрафиолетовыми лучами кормовых дрожжей. Возможно даже облучение животных ультрафиолетовым светом. Ниже показано содержание витамина Д в некоторых продуктах, мкг на 100 г
Кормовые дрожжи (после УФ - облучения) - 10-20 мг%. ТОКОФЕРОЛ(витамин Е). Токоферолы образуют группу витаминов, являющихся производными гидрохинона, которые имеют в качестве одного из боковых радикалов остаток спирта фитола. Более высокой активностью обладает a - токоферол. a - Токоферол и близкие по структуре соединения способны действовать как антиокислители по отношению к ненасыщенным липидам клеточных мембран и защищать мембранные липиды от действия свобод-ных радикалов, образующихся в процессе перекисного окисления орга-нических веществ. Возможно также участие токоферолов в окислительно- α -токоферол
восстановительных реакциях. При недостатке этого витамина нарушается нормальное фунционирование клеточных мембран, наблюдается дистрофия мышечных тканей, некроз печени, а также бесплодие у животных и птиц. Человеку в сутки необходимо потреблять 15-20 мг токоферолов. Основные источники витамина Е - растительные масла и зеленые части растений, а в животных продуктах его значительно меньше. Как антиокислители, токоферолы предохраняют масла от прогор-кания. В среднем содержание токоферолов в различных растительных продуктах может быть представлено следующими данными, мг %:
В процессе вегетации растений содержание токоферолов в листьях уменьшается, но происходит их накопление в зародышах семян. У масличных культур токоферолы накапливаются вместе с маслом в ядрах семян, поэтому при уборке незрелых семян происходит не только недобор масла, но и витамина Е. ВИТАМИН К. К витаминам группы К относятся производные нафтохинона, образующие два типа соединений - филлохиноны (витамин К1) и менахиноны (витамин К2). Филлохиноны синтезируются в растениях и имеют в боковой цепи 4 изопреновых остатка с одной двойной связью. Менахиноны встречаются в клетках животных и бактерий и они содержат в молекуле пять изопреновых остатков, в каждом из которых имеется двойная связь. Витамин К1 В животном организме функция витамина К заключается в том, что с его участием происходит карбоксилирование остатков глутаминовой кислоты в процессе синтеза активной формы белка - протромбина, необходимого для быстрого свертывания крови при повреждении тканей. У некоторых бактерий выявлена роль витамина К как промежуточного переносчика электронов в окислительно-восстановительных процессах. Имеются данные об участии этого витамина в процессе фотосинтеза у растений. При недостатке витамина К у животных и птиц понижается свертываемость крови. Аналогичные нарушения могут наблюдаться и у человека. Суточная норма этого витамина составляет 1-3 мг. Большое количество филлохинонов содержится в растительных маслах, листьях растений и листовых овощах, некоторых плодах и ягодах. Ниже дается содержание филлохинонов в некоторых растительных продуктах, мг%: Растительные масла 50-100 Виноград 0, 1-2 Яблоки 0, 1-0, 6 Листья растений и листовые овощи (в расчете на сухую массу) 5-20
ВОДОРАСТВОРИМЫЕ ВИТАМИНЫ. ТИАМИН (витамин В1). Тиамин состоит из двух гетероциклических компонентов, представляющих производные пиримидина и тиазола: Биологическая активность этого витамина определяется тем, что он в виде фосфорилированного производного тиаминпирофосфата входит в состав ферментов, катализирующих реакции декарбоксилирования a-кетокислот, а также реакции расщепления и образования a-оксикетонов. Эти реакции имеют важное значение для процессов превращения углеводов в клетках растений, животных и микроорганизмов. У высших организмов тиаминпирофосфат в качестве кофермента входит в состав ферментного комплекса, катализирующего окислительное декарбоксилирование пировиноградной и a-кетоглутаровой кислот в процессе окисления углеводов в ходе дыхания, поэтому при недостатке тиамина происходит нарушение углеводного обмена и накопление этих кислот в тканях и в крови. Полифосфатные производные витамина В1 также играют важную роль в системе транспорта ионов натрия через мембраны нейронов в организме человека, в связи с чем длительный недостаток тиамина приводит к нарушению передачи нервных импульсов и, как следствие, к параличам. При частичном недостатке витамина В1 наблюдается быстрая утомляемость, падение веса, судороги. Все указанные симптомы и являются характерными признаками заболевания полиневритом. Суточная потребность в тиамине для человека 1-3 мг. Наиболее богаты тиамином рисовые и другие отруби, дрожжи, зародыши зерновок злаковых растений, внутренние органы животных (печень, сердце, почки). Ниже приведено содержание витамина В1 в растительных и животных продуктах, мг%:
Основными источниками витамина В1 для человека являются растительные продукты, главным образом зерно и продукты из зерна, картофель, овощи. Жвачные животные практически полностью удовлетворяют потребность в витамине В1 за счет его синтеза микроорганизмами желудочно-кишечного тракта, тогда как другие животные должны получать этот витамин в составе корма. В летнее время главные источники тиамина для животных - зеленые корма, в зимний период - отруби, кормовая мука, кормовые дрожжи. Много тиамина в молодой зелени, в ходе вегетации растений его концентрация в вегетативных органах понижается, а после цветения он накапливается в семенах и плодах. Синтез тиамина зависит от условий питания и особенно от обеспеченности растений азотом, фосфором, калием и серой. При оптимальном питании растений указанными элементами его концентрация в листьях растений, плодах и овощах может увеличиваться в 1, 5-2 раза. Тиамин довольно устойчив к нагреванию и кипячению в кислой среде, но подвергается разрушению под воздействием тепловой обработки в нейтральной и щелочной среде, что следует учитывать при выборе технологии переработки производства пищевых продуктов и кормов для сельскохозяйственных животных. РИБОФЛАВИН (витамин В2). Свое название этот витамин получил вследствие желтой окраски его кристаллов и наличия в молекуле остатка спирта D-рибита. Второй структурный компонент в молекуле рибофлавина - азотистое гетероциклическое основание - 6, 7-диметилизоаллоксазин. Рибофлавин входит в состав активных групп многих окислительно- восстановительных ферментов, называемых очень часто флавопротеидами или флавиновыми ферментами. Они способны отщеплять водород от органических соединений и передавать его другим переносчикам (флавиновые дегидрогеназы). В ряде окислительных процессов флавопротеиды переносят электроны от других восстановленных переносчиков на цитохромы. Восстановленная форма рибофлавина в соединении со специфическими белками образует большую группу ферментов, называемых оксидазами, которые могут передавать электроны на молекулярный кислород. Известны также флавопротеиды, вступающие в окислительные реакции со свободными радикалами и ионами металлов. В составе ферментов рибофлавин образует два типа активных соединений - коферментов: флавинмононуклеотид (ФМН) и флавин-адениндинуклеотид (ФАД). ФМН представляет собой соединение рибофлавина с ортофосфорной кислотой, а ФАД - соединение ФМН с адениловой кислотой. При недостатке в организме рибофлавина происходит ослабление окислительно-восстановительных процессов вследствие понижения скорости реакций, катализируемых указанными выше ферментами. В связи с недостатком витамина В2 у человека возникают характерные симптомы: воспаление слизистых оболочек ротовой полости и глазного яблока, слабость, нарушение аппетита. Суточная норма рибофлавина для человека 2-3 мг, свиньям рекомендуется давать этого витамина 2-7 мг, а лошадям и птице - 2-5 мг на 1 кг сухого корма. Жвачные животные удовлетворяют свою потребность в рибофлавине за счет жизнедеятельности микроорганизмов пищеварительной системы. Важнейшие источники витамина В2 для человека - продукты животного происхождения, а также картофель и овощи, для сельскохозяйственных животных - зеленые корма, сено, отруби, кормовые дрожжи. Особенно много рибофлавина в молодых листьях и соцветиях. Содержание витамина В2 в пищевых продуктах и кормах можно характеризовать следующими данными, мг%:
Рибофлавин достаточно термостабилен, но легко разрушается под действием света, что необходимо учитывать при хранении продукции. Активный синтез рибофлавина в растениях происходит при оптимальной обеспеченности питательными элементами. Для балансирования кормов сельскохозяйственных животных по содержанию витамина В2 промышленностью производятся кормовые препараты рибофлавина на основе культивирования отселектированных штаммов дрожжей Eremothecium ashbyii, способных накапливать в культуральной среде до 1, 5 мг/мл этого витамина. После окончания производственного цикла культуральную жидкость отделяют от клеток дрожжей, подкисляют до рH 4-5 и после удаления избытка растворителя на вакуумной выпарной установке высушивают концентрат до влажности 5-10%. Для улучшения физических свойств к полученному продукту добавляют отруби или кукурузную муку. Готовый кормовой препарат содержит около 1% витамина В2. ПИРИДОКСИН (витамин В6). В тканях животных витамин В6 содержится в виде производных гетероциклического соединения пиридина- пиридоксаля и пиридоксамина. В растениях синтезируется пиридоксин, который легко превращается в пиридоксаль, а последний - в пиридоксамин. В виде фосфорилированных производных - пиридоксальфосфата и пиридоксаминфосфата - витамин В6 входит в состав ферментов, катализирующих синтез и превращения различных аминокислот, в том числе реакции переаминирования, декарбоксилирования, рацемизации и др. Этот витамин участвует также в синтезе глутаминовой кислоты, необходимой для нормального функционирования центральной нервной системы. При недостатке витамина В6 нарушаются процессы аминокислотного обмена и связанного с ними обмена других азотистых веществ, возникают расстройства нервной системы и болезни кожи - дерматиты. В сутки человеку необходимо потреблять 1, 5-2 мг витамина В6, свиньям рекомендуется давать 1-2 мг на 1 кг корма, курам 3-10 мг. У жвачных животных синтезируется при нормальных условиях развития достаточное количество этого витамина микроорганизмами пищеварительной системы. Ниже дается среднее содержание витамина В6 в различных продуктах, мг%
Альдегидная форма витамина В6 легко разрушается на свету, особенно под воздействием УФ-лучей, тогда как пиридоксин более устойчив. ПАНТОТЕНОВАЯ КИСЛОТА (витамин В5). Молекула пантотено-вой кислоты образована из двух химических компонентов: b-аланина и диметилдиоксимасляной кислоты, которую называют также пантоевой кислотой: Из указанных структурных компонентов пантотеновой кислоты в организме человека не может синтезироваться пантоевая кислота. Витаминная активность пантотеновой кислоты определяется тем, что она входит в состав кофермента А, с участием которого происходит активирование остатков уксусной кислоты и образование важного проме-жуточного продукта обмена веществ организмов ацетилкофермента А, являющегося исходным соединением в процессе синтеза лимонной кислоты в цикле ди- и трикарбоновых кислот, яблочной кислоты - в глиосилатном цикле, а также в синтезе жирных кислот, стеролов и терпенов. При соединении с коферментом А происходит активирование жирных кислот в ходе их различных превращений и синтеза жиров, фосфолипидов и гликолипидов. Пантотеновая кислота также входит в состав ацилпереносящих белков, играющих важную роль в синтезе жирных кислот. Исходя из перечисленных выше функций пантотеноввой кислоты, при её недостатке прежде всего наблюдаются нарушения в обмене липидов и углеводов. У людей отмечается нарушение нервно - мышечной координации, утомляемость, нарушение функции надпочечников, у животных - замедление роста, выпадение волос и поражение кожи. Суточ-ная потребность человека в пантотеновой кислоте составляет 10-15 мг. У жвачных животных этот витамин синтезируется микроорганизмами преджелудков и кишечника. Много его содержится в зеленых частях растений, отрубях, дрожжах и продуктах животного происхождения. В зерновках злаковых растений пантотеновая кислота в основном накапливается в алейроновом слое и зародыше. Ниже показано содержание пантотеновой кислоты в некоторых растительных продуктах, мг%:
Пантотеновая кислота подвергается разрушению под воздействием высокой температуры, а также в щелочной и кислой среде. НИКОТИНОВАЯ КИСЛОТА (витамин РР). Никотиновая кислота в виде никотинамида входит в состав пиридиновых коферментов НАД и НАДФ, являющихся активными группами многих окислительно -восстановительных ферментов, называемых дегидрогеназами. Эти ферменты катализируют реакции отщепления и присоединения водорода и играют важную роль в процессах дыхания и фотосинтеза, синтезе глицеролфосфата и глутаминовой кислоты, синтезе и окислении жирных кислот, превращениях углеводов. Вследствие недостатка никотиновой кислоты происходит ослабление в организме окислительно-восстановительных процессов, что является причиной заболевания пеллагрой. Характерные признаки этой болезни - слабость, нарушение пищеварения, появление дерматита и психических расстройств. Никотиновая кислота в организме человека может синтезироваться из аминокислоты триптофана, в связи с чем заболевание пеллагрой распространено в регионах, где люди преимущественно питаются продуктами, полученными из зерна кукурузы, в белках которой очень мало триптофана. Человеку необходимо потреблять в сутки 7-15 мг витамина РР, животным рекомендуется давать 10-20 мг, птице 25-100 мг этого витамина в расчете на 1кг сухого корма. Никотиновая кислота синтезируется клетками растений и некоторых микроорганизмов, в том числе и микрофлорой желудочно-кишечного тракта животных. Много витамина РР содержат животные продукты, зеленые части растений, зерно злаковых и бобовых растений. Особенно богаты этим витамином отруби и дрожжи. Витамин РР устойчив к воздействию высоких температур, солнечного света, щелочной реакции среды. Содержание никотиновой кислоты в различных продуктах можно характеризовать следующими данными, мг%:
ФОЛИЕВАЯ КИСЛОТА (витамин Вс). Молекула фолиевой кислоты построена из остатков глутаминовой и парааминобензойной кислот, а так-же азотистого гетероциклического соединения 2-амино-4-окси-6-метилптеридина: В виде восстановленного производного 5, 6, 7, 8-тетрагидрофолие-вой кислоты этот витамин входит в состав ферментов, катализирующих реакции переноса одноуглеродных остатков - формальдегида и муравьиной кислоты, метильных (-СН3) и оксиметильных (-СН2ОН) групп. Эти реакции имеют важное значение в метаболизме ряда аминокислот - серина, глицина, метионина, гистидина, синтезе тимина и пуриновых нуклеотидов, в процессах метилирования ДНК, белков и других органических соединений. В составе коферментов тетрагидрофолевая кислота может содержать дополнительные остатки глутаминовой кислоты, соединенные амидной связью с углеродом g-карбоксильной группы (до семи остатков глутаминовой кислоты). При недостатке фолиевой кислоты снижается содержание эритроцитов в крови и развиваются различные формы анемии (малокровия), у животных и птиц наблюдается замедление роста, слабое развитие оперения. Для предотвращения анемии человеку необходимо потреблять ежедневно 0, 2-0, 5 мг этого витамина. Фолиевая кислота синтезируется растениями и некоторыми микроорганизмами, в том числе микрофлорой пищеварительной системы животных, много ее накапливается в печени, дрожжах, листовых овощах, плодах и ягодах, особенно в землянике, которая с давних пор используется для лечения малокровия. В процессе созревания плодов и ягод содержание в них фолиевой кислоты уменьшается. В различных растительных продуктах фолиевая кислота содержится в следующих количествах, мг%:
Для синтеза фолиевой кислоты необходима п-аминобензойная кислота, которая является фактором роста для многих микроорганизмов, в связи с чем относится к витаминоподобнным веществам: В клетках микроорганизмов она используется в качестве одного из компонентов для синтеза фолиевой кислоты, в том числе и в клетках желу-дочнокишечной флоры животных и птиц. Поэтому при недостатке п-ами-нобензойной кислоты вследствие слабого развития внутренней микрофло-ры, служащей для животных источником фолиевой кислоты, у молодняка животных и птиц наблюдается задержка роста, поседение волос и перьев. |
Последнее изменение этой страницы: 2017-03-17; Просмотров: 210; Нарушение авторского права страницы