Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Дисперсия в оптических волокнах



 

Наряду с коэффициентом затухания ОВ важнейшим параметром является дисперсия, которая определяет его пропускную способность для передачи информации.

Дисперсия – это рассеяние во времени спектральных и модовых составляющих оптических оптического сигнала, которые приводят к увеличению длительности импульса оптического излучения при распространения его по ОВ.

Уширение импульса определяется как квадратичная разность длительности импульсов на выходе и входе оптического волокна по формуле:

причем значения и берутся на уровне половины амплитуды импульсов (рисунок 2.8).

Рисунок 2.8

Рисунок 2.8 - Уширение импульса за счет дисперсии

Дисперсия возникает по двум причина: некогерентность источников излучения и существования большого количества мод. Дисперсия, вызванная первой причиной, называется хроматической (частотной) , она состоит из двух составляющих – материальной и волноводной (внутримодовой) дисперсий. Материальная дисперсия обусловлена зависимостью показателя преломления от длины волны, волноводная дисперсия связана с зависимостью коэффициента распространения от длины волны.

Дисперсия, вызванная второй причиной, называется модовой (межмодовой) .

Модовая дисперсия свойственна только многомодовым волокнам и обусловлена отличием времени прохождения мод по ОВ от его входа до выхода. В ОВ со ступенчатым профилем показателя преломления скорость распространения электромагнитных волн с длиной волны одинакова и равна: , где С – скорость света. В этом случае все лучи, падающие на торец ОВ под углом к оси в пределах апертурного угла распространяются в сердцевине волокна по своим зигзагообразным линиям и при одинаковой скорости распространения достигают приемного конца в разное время, что приводит к увеличению длительности принимаемого импульса. Так как минимальное время распространения оптического луча имеет место при падающем луче , а максимальное при , то можно записать:

где L – длина световода;

- показатель преломления сердцевины ОВ;

С – скорость света в вакууме.

Тогда значение межмодовой дисперсии равно:

Модовая дисперсия градиентных ОВ на порядок и более ниже, чем у ступенчатых волокон. Это обусловлено тем, что за счет уменьшения показателя преломления от оси ОВ к оболочке скорость распространения лучей вдоль их траектории изменяется. Так, на траекториях, близких к оси, она меньше, а удаленных больше. Лучи, распространяющиеся кратчайшими траекториями (ближе к оси), обладают меньшей скоростью, а лучи, распространяющиеся по более протяженным траекториям, имеют большую скорость. В результате время рапространения лучей выравнивается, и увеличение длительности импульса становится меньше. При параболическом профиле показателя преломления, когда показатель степени профиля q=2, модовая дисперсия определяется выражением:

Модовая дисперсия градиентного ОВ в раз меньше, чем ступенчатого при одинаковых значениях . А так как обычно , то модовая дисперсия указанных ОВ может отличаться на два порядка.

В расчетах при определении модовой дисперсии следует иметь в виду, что до определенной длины линии называемой длиной связи мод, нет межмодовой связи, а затем при происходит процесс взаимного преобразования мод и наступает установившийся режим. Поэтому при дисперсия увеличивается по линейному закону, а затем, при - по квадратичному закону.

Таким образом, вышеприведенные формулы справедливы лишь для длины . При длинах линий следует пользоваться следующими формулами:

- для ступенчатого световода

- для градиентного световода,

где - длина линии;

- длина связи мод (установившегося режима), равная км – для ступенчатого волокна и км – для градиентного (установлено эмпирическим путем).

Материальная дисперсия зависит от частоты (или от длины волны ) и материала ОВ, в качестве которого, как правило, используется кварцевое стекло. Дисперсия определяется электромагнитным взаимодействием волны со связанными электронами материала среды, которое носит, как правило, нелинейный (резонансный) характер.

Возникновение дисперсии в материале световода даже для одномодовых волокон обусловлено тем, что оптический источник, возбуждающий волокно (светоизлучающий диод – СИД или полупроводниковый лазер ППЛ) формирует световое излучение, имеющее непрерывный волновой спектр определенной ширины (для СИД это примерно нм, для многомодовых ППЛ - нм, для одномодовых лазерных диодов нм). Различные спектральные компоненты светового излучения распространяются с разными скоростями и приходят в определенную точку в разное время, приводя к уширению импульса на приемном конце и, при определенных условиях, к искажению его формы. Показатель преломления изменяется от длины волны (частоты ), при этом уровень дисперсии зависит от диапазона длин волн света, введенного в волокно (как правило, источник излучает несколько длин волн), а также от центральной рабочей длины волны источника. В области I окна прозрачности – более длинны волны (850нм) движутся быстрее по сравнению с более короткими длинами волн (845нм). В области III окна прозрачности ситуация меняется: более короткие (1550нм) движутся быстрее по сравнению с более длинными (1560нм). Рисунок 2.9

Рисунок 2.9 – Скорости распространения длин волн

 

Длина стрелок соответствует скорости длин волн, более длинная стрелка соответствует более быстрому движению.

В некоторой точке спектра происходит совпадение скоростей. Это совпадение у чистого кварцевого стекла происходит на длине волны нм, называемой длиной волны нулевой дисперсии материала, так как . При длине волны ниже длины волны нулевой дисперсии параметр имеет положительное значение, в обратном случае - отрицательное. Рисунок 2.10

Материальную дисперсию можно определить через удельную дисперсию по выражению:

.

Величина - удельная дисперсия, , определяется экспериментальным путем. При разных составах легирующих примесей в ОВ имеет разные значения в зависимости от (таблица 2.3).

 

Таблица 2.3 – Типичные значения удельной материальной дисперсии

Длина волны мкм 0, 6 0, 8 1, 0 1, 2 1, 3 1, 4 1, 55 1, 6 1, 8
, -5 -5 -18 -20 2-5

Волноводная (внутримодовая) дисперсия – этим термином обозначается зависимость задержки светового импульса от длины волны, связанная с изменением скорости его распространения в волокне из-за волноводного характера распространения. Уширение импульсов, обусловленное волноводной дисперсией, аналогично пропорционально ширине спектра излучения источника и определяется как:

,

где - удельная волноводная дисперсия, значение которой представлены в таблице 2.4:

 

Таблица 2.4

Длина волны мкм 0, 6 0, 8 1, 0 1, 2 1, 3 1, 4 1, 55 1, 6 1, 8
,

Рисунок 2.10 – Удельное значение дисперсии при различных длинах волн

 

Результирующее значение хроматической дисперсии определяется . Зависимость и для кварцевого световода представлена на рисунке 2.10. Здесь же показана и удельная суммарная зависимость , из которой следует, что на определенных длинах волн возникает эффект взаимной компенсации обоих типов дисперсии. Для кварца этот эффект возникает вблизи второго «окна прозрачности» мкм.

Результирующее значение импульсов за счет модовой, материальной и волноводной дисперсией определяется выражением:

Поляризационно-модовая дисперсия – обусловлена дифференциальной групповой задержкой между лучами с основными состояниями поляризации. Распределение энергии сигнала по различным состояниям поляризации медленно изменяется со временем, например, вследствие изменения температуры окружающей среды, анизотропия показателя преломления, вызванная механическими усилиями.

В одномодовом волокне распространяется не одна мода, как принято считать, а две перпендикулярные поляризации (моды) исходного сигнала. В идеальном волокне эти моды распространялись бы с одинаковой скоростью, однако реальные волокна имеют не идеальную геометрию. Главной причиной поляризационной модовой дисперсии является неконцентричность профиля сердцевины волокна, возникающая в процессе изготовления волокна и кабеля. В результате две перпендикулярные поляризационные составляющие имеют разные скорости распространения, что и приводит к дисперсии (рисунок 2.11)

Рисунок 2.11

 

Коэффициент удельной поляризационно-модовой дисперсии нормируется в расчете на 1км и имеет размерность . Величина поляризационно-модовой дисперсии рассчитывается по формуле:

Из-за небольшой величины ее необходимо учитывать исключительно в одномодовом волокне, причем, когда используется передача высокоскоростного сигнала (2, 5Гбит/с и выше) с очень узкой спектральной полосой излучения 0, 1нм и меньше. В этом случае хроматическая дисперсия становится сравнимой с поляризационной модовой дисперсией.

Коэффициент удельной ПМД типового волокна, как правило, составляет .


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 1819; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь