Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Классификация и принцип работы гидроприводов. Преимущества и недостатки гидропривода.
Гидроприводом называется совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством жидкости. Составной частью гидропривода является гидравлическая передача. Она включает в себя насос, гидродвигатель и соединяющие их гидролинии (магистраль). В состав гидропривода также входят устройства управления и обслуживания (фильтры, гидробаки, гидроаккумуляторы и др.). По принципу действия гидроприводы делятся на объемные и гидродинамические. Объемным гидроприводом называется гидравлическая система, в которой в качестве гидравлической передачи применяются насосы и гидродвигатели объемного действия. Работа объемного гидропривода основана на использовании свойства несжимаемости капельной жидкости и передачи давления по закону Паскаля. Примером объемного гидропривода простейшей конструкции может служить гидравлический пресс, изображенный на рисунке Гидродинамическим приводом называется гидравлическая система, в которой в качестве гидравлической передачи применяются лопастные насосные и турбинные колеса, расположенные соосно на предельно близком друг от друга расстоянии. Перенос энергии от ведущего звена в ведомому осуществляется потоком жидкости, а крутящий момент передается в результате изменения момента количества движения рабочей жидкости в рабочих колесах. При этом ведущий и ведомый валы механически не связаны между собой. Благодаря этим особенностям гидродинамический привод чаще называют гидродинамической передачей.[4] Объемные гидроприводы подразделяются по виду источника энергии на три типа: 1 Насосный гидропривод — гидропривод, использующий для подачи рабочей жидкости насосы объемного действия. Насосные гидроприводы бывают с замкнутой циркуляцией, когда жидкость от гидродвигателя поступает во всасывающую линию насоса, и с разомкнутой циркуляцией, когда жидкость от гидродвигателя поступает в гидробак. Насос гидропривода может приводиться в движение электродвигателем, турбиной, дизельным, карбюраторным двигателями, двигателем внутреннего сгорания и др. 2. Аккумуляторный гидропривод — гидропривод, в котором рабочая жидкость подается в гидродвигатель от предварительно заряженного гидроаккумулятора. Такие гидроприводы используются в системах с кратковременным рабочим циклом. 3. Магистральный гидропривод, в котором рабочая жидкость подается в гидродвигатель от гидромагистрали, питающей от насосной станции одновременно несколько гидроприводов. По характеру движения выходного звена различают гидроприводы поступательного, поворотного и вращательного движения. Гидроприводы бывают регулируемые и нерегулируемые. По способу регулирования скорости гидроприводы делят на три типа: 1. С дроссельным регулированием, когда для регулирования скорости производится дросселирование потока рабочей жидкости и часть потока отводится, минуя гидродвигатель. 2. С объемным регулированием, когда регулирование скорости производится в результате изменения рабочих объемов насоса или гидродвигателя. 3. С объемно-дроссельным регулированием, когда регулирование скорости осуществляется одновременно двумя способами. Если скорость выходного звена гидропривода поддерживается постоянной и не зависит от внешних воздействий, то гидропривод называется стабилизированным. Если скорость выходного звена изменяется по определенному закону в зависимости от задающего воздействия, то гидропривод называется следящим. Жидкость, применяемая в гидроприводах в качестве рабочего тела, одновременно является смазывающим и охлаждающим агентом, обеспечивает защиту деталей от коррозии и надежную работу всех узлов гидропривода. Гидроприводы и гидропередачи находят широкое применение в различных областях техники. Это объясняется рядом достоинств, которыми обладают гидроприводы. Отметим наиболее важные из них: бесступенчатое регулирование скоростей в широком диапазоне; получение больших сил и мощностей при малых размерах и весе механизма; получение различных видов движения, возможность частых и быстрых переключении; возможность больших перегрузок по мощности и моменту без вредных последствий этих перегрузок; возможность автоматизации и дистанционного управления; простота кинетической схемы по сравнению с механическим приводом; самосмазываемость элементов, что исключает операцию смазывания. Вместе с тем гидроприводу и гидропередачам присущи некоторые недостатки: потери части энергии при ее передаче, превышающие потери в электропередачах. Гидравлические и энергетические параметры гидравлических машин. - - - - - - - Регулирование объемных гидропередач. Червячно-винтовая передача необратима. Выходная жесткость передачи возрастает с увеличением передаточного отношения. Однако его увеличение влечет за собой повышение кинематических погрешностей (неравномерность скорости) и препятствует расширению диапазона регулирования скоростей движения активного захвата. Поэтому обычно диапазон регулирования скоростей в машинах с механическим возбуждением находится в пределах 3—4 порядков и в исключительных случаях достигает 5—6 порядков. Для расширения диапазонов регулирования непосредственно приводом используют следящие гидропередачи. Наилучшими регулировочными параметрами (идеально жесткая скоростная характеристика в пределах мощности) обладают синхронные следящие гидропередачи. Соединение объемных насоса и гидромотора образует объемную гидропередачу вращательного движения, которая может быть выполнена как в регулируемом, так и в нерегулируемом вариантах. Регулируемая гидропередача при обычно постоянной скорости вращения вала насоса допускает регулирование скорости вращения вала гидромотора в нерегулируемой передаче скорости вращения валов насоса и гидромотора постоянны. В гидропередачах ступенчатого регулирования несколько нерегулируемых насосов включается поочередно или параллельно. В гидропередачах дроссельного регулирования скорость вращения гидромотора, питаемого нерегулируемым насосом, регулируется дроссельными устройствами, включенными на входе или выходе рабочей жидкости из гидромотора, а также в ответвление от нагнетательной линии. Так была создана гидропередача, называемая гидродинамическим преобразователем момента или, короче, гидротрансформатором и предназначенная для бесступенчатого регулирования скорости. Схема этой передачи показана на рис. 3. По принципу осуществления регулирования скорости различают объемную гидропередачу с дроссельным регулированием, когда регулирование осуществляется изменением сопротивления дросселя (клапана), установленного в гидравлической магистрали, и с объемным регулированием, когда регулирование осуществляется путем раздельного или одновременного изменения рабочего объема насоса или гидродвигателя. Объемные гидромашины. К объемным гидромашинам относятся насосы и насосы-моторы, рабочий процесс которых основан на попеременном заполнении рабочей камеры рабочей жидкостью и вытеснении ее из рабочей камеры. Под рабочей камерой принято понимать емкость, ограниченную рабочими поверхностями деталей гидромашины, периодически изменяющую свой объем и попеременно сообщающуюся с каналами, подводящими и отводящими рабочую жидкость. Насос предназначен для преобразования механической энергии приводного двигателя в энергию потока рабочей жидкости. В гидроприводах мобильных машин применяют роторно-вращательные и роторно-поступательные насосы, которые по виду рабочих органов разделяют на шестеренные, шиберные (пластинчатые) и поршневые. По углу ротора с рабочими органами различают радиальные и аксиальные роторно-поршневые насосы. По механизму передачи движения радиально-поршневые насосы классифицируют на кулачковые и кривошипные, а аксиально-поршневые — с наклонным блоком и с наклонным диском. Роторные насосы могут быть выполнены с нерегулируемым и регулируемым рабочим объемом и предназначены для работы как в режиме объемного насоса, так и в режиме объемного гидромотора (насоса-мотора) с реверсивным, нереверсивным направлениями вращения и с постоянным и реверсивным направлениями потока. В объемных гидроприводах мобильных машин широко применяют обратимые аксиально-поршневые насосы, предназначенные для использования как в режиме насоса, так и в режиме гидромотора. Гидромотор служит для преобразования энергии потока рабочей жидкости, развиваемой насосом, в энергию вращения выходного вала, чтобы привести в действие исполнительный механизм машины. Роторные гидромоторы классифицируют по конструкции рабочей камеры на шестеренные, коловратные, винтовые, шиберные и поршневые, обладающие принципиальной обратимостью. По числу рабочих циклов в каждой рабочей камере за один оборот выходного вала гидромоторы разделяют на однократного (одноходовые) или многократного (многоходовые) действия. В гидроприводах мобильных машин наиболее часто применяют реверсивные по направлению вращения аксиально-поршневые и радиально-поршневые гидромоторы с нерегулируемым и реже с регулируемым рабочим объемом. Насосами и гидромоторами с регулируемым рабочим объемом в отечественных мобильных машинах с гидроприводом служат лишь аксиально-поршневые, обеспечивающие бесступенчатое регулирование частоты вращения исполнительных механизмов с минимальными потерями энергии. |
Последнее изменение этой страницы: 2017-04-12; Просмотров: 1361; Нарушение авторского права страницы