Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Грунт как источник низкопотенциальной тепловой энергии.




В качестве источника низкопотенциальной тепловой энергии могут использоваться подземные воды с относительно низкой температурой либо грунт поверхностных (глубиной до 400 м) слоев земли. Теплосодержание грунтового массива в общем случае выше. Тепловой режим грунта поверхностных слоев земли формируется под действием двух основных факторов – падающей на поверхность солнечной радиации и потоком радиогенного тепла из земных недр. Сезонные и суточные изменения интенсивности солнечной радиации и температуры наружного воздуха вызывают колебания температуры верхних слоев грунта. Глубина проникновения суточных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации в зависимости от конкретных почвенно-климатических условий колеблется в пределах от нескольких десятков сантиметров до полутора метров. Глубина проникновения сезонных колебаний температуры наружного воздуха и интенсивности падающей солнечной радиации не превышает, как правило, 15–20 м.

 
Рисунок 1. График изменения температуры грунта в зависимости от глубины

 

 

Рис. 2. Факторы, под воздействием которых формируется температурный режим грунта [3]

В эксплуатационный период массив грунта, находящийся в пределах зоны теплового влияния регистра труб грунтового теплообменника системы сбора низкопотенциального тепла грунта (системы теплосбора), вследствие сезонного изменения параметров наружного климата, а также под воздействием эксплуатационных нагрузок на систему теплосбора, как правило, подвергается многократному замораживанию и оттаиванию. При этом, естественно, происходит изменение агрегатного состояния влаги, заключенной в порах грунта и находящейся в общем случае как в жидкой, так и в твердой и газообразной фазах одновременно. Иначе говоря, грунтовый массив системы теплосбора, независимо от того, в каком состоянии он находится (в мерзлом или талом), представляет собой сложную трехфазную полидисперсную гетерогенную систему, «скелет» которой образован огромным количеством твердых частиц разнообразной формы и величины и может быть как жестким, так и подвижным, в зависимости от того, прочно ли связаны между собой частицы или же они отделены друг от друга веществом в подвижной фазе. Промежутки между твердыми частицами могут быть заполнены минерализованной влагой, газом, паром и льдом или тем и другим одновременно. Моделирование процессов тепломассопереноса, формирующих тепловой режим такой многокомпонентной системы, представляет собой чрезвычайно сложную задачу, поскольку требует учета и математического описания разнообразных механизмов их осуществления: теплопроводности в отдельной частице, теплопередачи от одной частицы к другой при их контакте, молекулярной теплопроводности в среде, заполняющей промежутки между частицами, конвекции пара и влаги, содержащихся в поровом.пространстве,.и.многих.других.
Особо следует остановиться на влиянии влажности грунтового массива и миграции влаги в его поровом пространстве на тепловые процессы, определяющие характеристики грунта как источника.низкопотенциальной.тепловой.энергии.
В капилярно-пористых системах, каковой является грунтовый массив системы теплосбора, наличие влаги в поровом пространстве оказывает заметное влияние на процесс распространения тепла. Корректный учет этого влияния на сегодняшний день сопряжен со значительными трудностями, которые прежде всего связаны с отсутствием четких представлений о характере распределения твердой, жидкой и газообразной фаз влаги в той или иной структуре системы. До сих пор не выяснены природа сил связи влаги с частицами скелета, зависимость форм связи влаги с материалом на различных стадиях увлажнения, механизм перемещения влаги в поровом пространстве.
При наличии в толще грунтового массива температурного градиента молекулы пара перемещаются к местам, имеющим пониженный температурный потенциал, но в то же время под действием гравитационных сил возникает противоположно направленный поток влаги в жидкой фазе. Кроме этого, на температурный режим верхних слоев грунта оказывает влияние влага атмосферных.осадков,.а.также.грунтовые.воды.
Основные факторы, под воздействием которых формируется температурный режим грунтового массива систем сбора низкопотенциального тепла грунта, приведены на рис. 2.

3. РАБОТА ТЕПЛОВОГО НАСОСА.

Устройство теплового насоса.

 

1. Охлажденный теплоноситель, проходя по внешнему трубопроводу, нагревается на несколько градусов

2. Внутри насоса, теплоноситель, проходя через теплообменник, называемый испарителем, отдает собранное из окружающей среды тепло во внутренний контур, заполненный хладоагентом. Хладоагент, имея очень низкую температуру кипения, проходя через испаритель, превращается из жидкого состояния в газообразное. Это происходит при низком давлении и температуре -5°С.

3. Из испарителя газообразный хладоагент попадает в компрессор, где он сжимается до высокого давления и высокой температуры.

4. Далее горячий газ поступает во второй теплообменник, конденсатор. В конденсаторе происходит теплообмен между горячим газом и теплоносителем изобратного трубопровода системы отопления дома. Хладоагент отдает свое тепло в систему отопления, охлаждается и снова переходит в жидкоесостояние, а нагретый теплоноситель системы отопления поступает к отопительным приборам.

5. При прохождении хладоагента через редукционный клапан давление понижается, хладоген попадает в испаритель, и цикл повторяется снова.


Основными элементами теплового насоса являются соединенные трубопроводом испаритель, компрессор, конденсатор и регулятор потока - дроссель, детандер или вихревую трубу. Схематично тепловой насос можно представить в виде системы из трех замкнутых контуров: в первом, внешнем, циркулирует теплоотдатчик (теплоноситель, собирающий теплоту окружающей среды), во втором — вещество, которое испаряется, отбирая теплоту теплоотдатчика, и конденсируется, отдавая теплоту теплоприемнику, в третьем — теплоприемник (вода в системах отопления и горячего водоснабжения здания).

Внешний контур (коллектор) представляет собой уложенный в землю или в воду (напр. полиэтиленовый) трубопровод, в котором циркулирует незамерзающая жидкость — антифриз. Источником низкопотенциального тепла может служить грунт, скальная порода, озеро, река, море и даже выход теплого воздуха из системы вентиляции какого-либо промышленного предприятия.

Во второй контур, где циркулирует хладагент, как и в бытовом холодильнике, встроены теплообменники — испаритель и конденсатор, а также устройства, которые меняют давление хладагента — распыляющий его в жидкой фазе дроссель (узкое калиброванное отверстие) и сжимающий его уже в газообразном состоянии компрессор.

Жидкий хладагент продавливается через дроссель, его давление падает, и он поступает в испаритель, где вскипает, отбирая теплоту, поставляемую коллектором из окружающей среды. Далее газ, в который превратился хладагент, всасывается в компрессор, сжимается и, нагретый, выталкивается в конденсатор. Конденсатор является теплоотдающим узлом теплонасоса: здесь теплота принимается водой в системе отопительного контура. При этом газ охлаждается и конденсируется, чтобы вновь подвергнуться разряжению в расширительном вентиле и вернуться в испаритель. После этого рабочий цикл начинается сначала.

 

В процессе работы компрессор затрачивает электроэнергию. На каждый затраченный киловатт-час электроэнергии тепловой насос вырабатывает 2, 5-5 киловатт-часов тепловой энергии. Соотношение вырабатываемой тепловой энергии и потребляемой электрической называется коэффициентом трансформации (или коэффициентом преобразования теплоты) и служит показателем эффективности работы ТН. Эта величина зависит от разности уровня температур в испарителе и конденсаторе: чем больше разность, тем меньше эта величина.

По этой причине тепловой насос должен использовать по возможности большее количество низкопотенциального тепла, не стремясь добиться его сильного охлаждения. В самом деле, при этом растет эффективность теплового насоса, поскольку при слабом охлаждении источника тепла не происходит значительного роста разницы температур. По этой причине тепловые насосы делают так, чтобы масса низкотемпературного источника тепла была значительно большей, чем нагреваемая масса.

Отличие теплового насоса от топливных источников тепла состоит в том, что для работы, кроме энергии для компрессора, ему нужен также источник низкопотенциального тепла, в то время как в традиционных источниках тепла вырабатываемое тепло зависит исключительно от теплотворной способности топлива.

Проблема привязки теплового насоса к источнику низкопотенциального тепла, имеющего большую массу может быть решена введением в тепловой насос системы массопереноса, например, системы прокачки воды. Так устроена система центрального отопления города Стокгольма.


Поделиться:



Последнее изменение этой страницы: 2017-04-13; Просмотров: 501; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь