Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Условный КПД тепловых насосов



Тепловой насос способен, используя высокопотенциальные источники энергии, «накачать» в помещение (в процентах от затраченной) от 200% до 600% низкопотенциальной тепловой энергии. В этом нет нарушения закона сохранения энергии, так как при этом охлаждается окружающая среда. Количество теплоты, передаваемое более теплым телам на 1 джоуль затраченной работы называется коэффициентом преобразования энергии.

Теоретически применение тепловых насосов для обогрева помещений эффективнее газовых котлов. Современные парогазотурбинные установки на электростанциях имеют КПД, незначительно меньший КПД газовых котлов. В результате при переходе электроэнергетики на современное оборудование и при применении тепловых насосов можно получить экономию газа до 3-5 раз в сравнении с газовыми котлами. В действительности приходится учитывать накладные расходы по передаче, преобразованию и распределению электроэнергии (т.е. услуги энергосетей). В результате отпускная цена электричествав 3-5 раз превышает его себестоимость, что сводит на нет применение в общем-то прогрессивной технологии. В связи с этим, целесообразно или использовать электричество от альтернативных источников (волновые, ветровые, солнечные электростанции), или комбинировать генерацию электричества из газа с использованием его здесь же, на месте, для получения тепла в тепловом насосе.

 

Еще более многообещающей является система, комбинирующая в единую систему теплоснабжения геотермальный источник и тепловой насос. При этом геотермальный источник может быть как естественного (выход геотермальных вод), так и искусственного происхождения (скважина с закачкой холодной воды в глубокий слой и выходом на поверхность нагретой воды).

 

Другим возможным применением теплового насоса может стать его комбинирование с существующими системами централизованного теплоснабжения. К потребителю в этом случае может подаваться относительно холодная вода, тепло которой преобразуется тепловым насосом в тепло с потенциалом, достаточным для отопления. При этом, вследствие меньшей температуры теплоносителя потери на пути к потребителю (пропорциональные разности температуры теплоносителя и окружающей среды) могут быть значительно уменьшены. Также будет уменьшен износ труб центрального отопления, поскольку холодная вода обладает меньшей коррозионной активностью, чем горячая.

 

Виды систем использования низкопотенциальной

Тепловой энергии земли.

Грунтовые теплообменники связывают теплонасосное оборудование с грунтовым массивом. Кроме «извлечения» тепла земли, грунтовые теплообменники могут использоваться и для накопления тепла (или холода) в грунтовом массиве. В общем случае можно выделить два вида систем использования низкопотенциальной тепловой энергии земли:

- открытые системы: в качестве источника низкопотенциальной тепловой энергии используются грунтовые воды, подводимые непосредственно к тепловым насосам;

- замкнутые системы: теплообменники расположены в грунтовом массиве; при циркуляции по ним теплоносителя с пониженной относительно грунта температурой происходит «отбор» тепловой энергии от грунта и перенос ее к испарителю теплового насоса (или, при использовании теплоносителя с повышенной относительно грунта температурой, его охлаждение).

Основная часть открытых систем – скважины, позволяющие извлекать грунтовые воды из водоносных слоев грунта и возвращать воду обратно в те же водоносные слои. Обычно для этого устраиваются парные скважины. Схема такой системы приведена на рис. 3.

Рисунок 3. Схема открытой системы использования низкопотенциальной тепловой энергии грунтовых вод

Достоинством открытых систем является возможность получения большого количества тепловой энергии при относительно низких затратах. Однако скважины требуют обслуживания. Кроме этого, использование таких систем возможно не во всех местностях. Главные требования к грунту и грунтовым водам таковы:

- достаточная водопроницаемость грунта, позволяющая пополняться запасам воды;

- хороший химический состав грунтовых вод (например, низкое железосодержание), позволяющий избежать проблем, связанных с образованием отложений на стенках труб и коррозией.

Открытые системы чаще используются для тепло- или холодоснабжения крупных зданий. Самая большая в мире геотермальная теплонасосная система использует в качестве источника низкопотенциальной тепловой энергии грунтовые воды. Эта система расположена в США в г. Луисвилль (Louisville), штат Кентукки. Система используется для тепло- и холодоснабжения гостинично-офисного комплекса; ее мощность составляет примерно 10 МВт.

Иногда к системам, использующим тепло земли, относят и системы использования низкопотенциального тепла открытых водоемов, естественных и искусственных. Такой подход принят, в частности, в США. Системы, использующие низкопотенциальное тепло водоемов, относятся к открытым, как и системы, использующие низкопотенциальное тепло грунтовых вод.

Рисунок 4. Виды горизонтальных грунтовых теплообменников: а – теплообменник из последовательно соединенных труб; б– теплообменник из параллельно соединенных труб; в– горизонтальный коллектор, уложенный в траншее; г– теплообменник в форме петли; д – теплообменник в форме спирали, расположенной горизонтально (так называемый «slinky» коллектор); е – теплообменник в форме спирали, расположенной вертикально

Замкнутые системы, в свою очередь, делятся на горизонтальные и вертикальные.

Горизонтальный грунтовой теплообменник (в англоязычной литературе используются также термины «ground heat collector» и «horizontal loop») устраивается, как правило, рядом с домом на небольшой глубине (но ниже уровня промерзания грунта в зимнее время). Использование горизонтальных грунтовых теплообменников ограничено размерами имеющейся площадки.

В странах Западной и Центральной Европы горизонтальные грунтовые теплообменники обычно представляют собой отдельные трубы, положенные относительно плотно и соединенные между собой последовательно или параллельно (рис. 4а, 4б). Для экономии площади участка были разработаны усовершенствованные типы теплообменников, например, теплообменники в форме спирали, расположенной горизонтально или вертикально (рис. 4д, 4е). Такая форма теплообменников распространена в США.

Если система с горизонтальными теплообменниками используется только для получения тепла, ее нормальное функционирование возможно только при условии достаточных теплопоступлений с поверхности земли за счет солнечной радиации. По этой причине поверхность выше теплообменников должна быть подвержена воздействию солнечных лучей.

Вертикальные грунтовые теплообменники (в англоязычной литературе принято обозначение «BHE» – «borehole heat exchanger») позволяют использовать низкопотенциальную тепловую энергию грунтового массива, лежащего ниже «нейтральной зоны» (10–20 м от уровня земли). Системы с вертикальными грунтовыми теплообменниками не требуют участков большой площади и не зависят от интенсивности солнечной радиации, падающей на поверхность. Вертикальные грунтовые теплообменники эффективно работают практически во всех видах геологических сред, за исключением грунтов с низкой теплопроводностью, например, сухого песка или сухого гравия. Системы с вертикальными грунтовыми теплообменниками получили очень широкое распространение.

Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником приведена на рис. 5.

Рисунок 5.(слева) Схема отопления и горячего водоснабжения одноквартирного жилого дома посредством теплонасосной установки с вертикальным грунтовым теплообменником Рисунок 6.(справа) Сечение различных типов вертикальных грунтовых теплообменников

Теплоноситель циркулирует по трубам (чаще всего полиэтиленовым или полипропиленовым), уложенным в вертикальных скважинах глубиной от 50 до 200 м. Обычно используется два типа вертикальных грунтовых теплообменников (рис. 6):

- U-образный теплообменник, представляющий собой две параллельные трубы, соединенные в нижней части. В одной скважине располагаются одна или две (реже три) пары таких труб. Преимуществом такой схемы является относительно низкая стоимость изготовления. Двойные U-образные теплообменники – наиболее широко используемый в Европе тип вертикальных грунтовых теплообменников.

- Коаксиальный (концентрический) теплообменник. Простейший коаксиальный теплообменник представляет собой две трубы различного диаметра. Труба меньшего диаметра располагается внутри другой трубы. Коаксиальные теплообменники могут быть и более сложных конфигураций.

Для увеличения эффективности теплообменников пространство между стенками скважины и трубами заполняется специальными теплопроводящими материалами.

Системы с вертикальными грунтовыми теплообменниками могут использоваться для тепло- и холодоснабжения зданий различных размеров. Для небольшого здания достаточно одного теплообменника; для больших зданий может потребоваться устройство целой группы скважин с вертикальными теплообменниками. Самое большое в мире число скважин используется в системе тепло- и холодоснабжения «Richard Stockton College» в США в штате Нью-Джерси. Вертикальные грунтовые теплообменники этого колледжа располагаются в 400 скважинах глубиной 130 м. В Европе наибольшее число скважин (154 скважины глубиной 70 м) используются в системе тепло- и холодоснабжения центрального офиса Германской службы управления воздушным движением («Deutsche Flug-sicherung»).

Частным случаем вертикальных замкнутых систем является использование в качестве грунтовых теплообменников строительных конструкций, например фундаментных свай с замоноличенными трубопроводами. Сечение такой сваи с тремя контурами грунтового теплообменника приведено на рис. 7.

Рисунок 7.(слева) Схема грунтовых теплообменников, замоноличенных в фундаментные сваи здания, и поперечное сечение такой сваи Рисунок 8.(справа) Схема скважины типа «standing column well»

Грунтовой массив (в случае вертикальных грунтовых теплообменников) и строительные конструкции с грунтовыми теплообменниками могут использоваться не только как источник, но и как естественный аккумулятор тепловой энергии или «холода», например тепла солнечной радиации.

Существуют системы использования низкопотенциального тепла земли, которые нельзя однозначно отнести к открытым или замкнутым. Например, одна и та же глубокая (глубиной от 100 до 450 м) скважина, заполненная водой, может быть как эксплуатационной, так и нагнетательной. Диаметр скважины обычно составляет 15 см. В нижнюю часть скважины помещается насос, посредством которого вода из скважины подается к испарителям теплового насоса. Обратная вода возвращается в верхнюю часть водяного столба в ту же скважину. Происходит постоянная подпитка скважины грунтовыми водами, и открытая система работает подобно замкнутой. Системы такого типа в англоязычной литературе носят название «standing column well system» (рис. 8).

Обычно скважины такого типа используются и для снабжения здания питьевой водой. Однако такая система может работать эффективно только в почвах, которые обеспечивают постоянную подпитку скважины водой, что предотвращает ее замерзание. Если водоносный горизонт залегает слишком глубоко, для нормального функционирования системы потребуется мощный насос, требующий повышенных затрат энергии. Большая глубина скважины обуславливает достаточно высокую стоимость подобных систем, поэтому они не используются для тепло- и холодоснабжения небольших зданий. Сейчас в мире функционирует несколько таких систем (в США и Европе).

Одно из перспективных направлений – использование в качестве источника низкопотенциальной тепловой энергии воды из шахт и туннелей. Температура этой воды постоянна в течение всего года. Вода из шахт и туннелей легко доступна.

 

 

Рисунок 9.

Схемы распределения температур в грунтовом массиве вокруг вертикального грунтового теплообменника в начале и в конце первого отопительного сезона [5]

 

 


Поделиться:



Последнее изменение этой страницы: 2017-04-13; Просмотров: 958; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.02 с.)
Главная | Случайная страница | Обратная связь