Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Раздел №1. Элементная база современных электронных устройств.



МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА

РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение

высшего образования

«Санкт-Петербургский государственный аграрный университет»

Кафедра Электроэнергетики и электрооборудования

 

 

Пигарев Л.А

 

ЭЛЕКТРОНИКА

 

Конспект лекций

 

Санкт-Петербург

 

Пигарев, Л.А.

Электроника: конспект лекций / Л.А. Пигарев, энергетический факультет, каф. «Электроэнергетики и электрооборудования. СПбГАУ, 2016. – 105 с.

 

 

В конспекте лекций излагаются вопросы по элементной базе современных полупроводниковых приборов, наиболее часто используемых при построении электронных устройств. Рассматриваются вопросы технической реализации преобразователей электрической энергии в электрическую и методов регулирования нагрузкой переменного и постоянного тока. Рассматриваются усилительные и импульсные устройства, излагается материал по основам цифровой и микропроцессорной технике.

Конспект лекций предназначен для подготовки бакалавров очной (заочной) формы обучения по направлению 03.05.06 «Агроинженерия», тип образовательной программы - академический бакалавриат, профиль подготовки бакалавра - «Электрооборудование и электротехнологии в АПК».

 

 


СОДЕРЖАНИЕ

Раздел 1. Элементная база современных электронных устройств……
Лекция 1. Полупроводниковые материалы. Электронно-дырочный р-n переход………………………………………………………………  
1.1 Элементы зонной теории твердого тела…………………………….
1.2 Полупроводники p- и n- типов………………………………………
1.3 Полупроводниковый p-nереход……………………………………..
1.4 Полупроводники на основе карбида кремния (SiC)………………
1.5 Классификация полупроводниковых диодов………………………
1.6 Выпрямительные диоды……………………………………………...
1.7 Диоды Шоттки………………………………………………………..
Лекция 2. Полупроводниковые стабилитроны и светодиоды. Биполярные и полевые транзисторы………………………………………….  
2.1 Полупроводниковые стабилитроны…………………………………
2.2 Полупроводниковые излучающие диоды (светодиоды)…………...
2.3 Биполярные транзисторы…………………………………………….
2.3.1 Статические характеристики биполярных транзисторов……….
2.3.2 Динамический режим работы транзисторов……………………..
2.3.3 Параметры транзистора как четырехполюсника………………...
2.4 Полевой транзистор…………………………………………………..
2.5 Тиристоры и симисторы……………………………………………..
2.6 Оптроны……………………………………………………………….
Раздел 2. Источники вторичного электропитания……………………..
Лекция 3 Преобразователи электрической энергии в электрическую..
3.1 Классификация преобразователей…………………………………..
3.2 Преобразователи напряжения переменного тока в напряжение постоянного тока (AC – DC преобразователи)…………………………  
3.2.1 Однофазные схемы выпрямления…………………………………
3.2.2 Трехфазные схемы выпрямления………………………………….
Лекция 4. Управляемые выпрямители. Циклоконверторы. Инверторы…………………………………………………………………………..  
4.1 Управляемые выпрямители………………………………………….
4.2 Циклоконверторы (AC – AC преобразователи)……………………
4.3 Инверторы (DC – AC преобразователи)…………………………….
Раздел 3.Электронные и импульсные устройства…………………….
Лекция 5. Усилители переменного напряжения. Обратные связи в усилителях. Операционные усилители (ОУ)…………………………..  
5.1 Электронные усилители. Классификация…………………………..
5.2 Усилительный каскад по схеме с общим эмиттером………………
5.3 Эмиттерный повторитель……………………………………………
5.4 Операционные усилители (ОУ)……………………………………...
5.4.1 Общие сведения об операционных усилителях…………………..
5.4.2 Амплитудно-частотная характеристика ОУ……………………...
5.4.3 Схемы включения операционных усилителей…………………...
5.4.3.1 Инвертирующее включение ОУ………………………………..
5.4.3.2 Неинвертирующее включение ОУ……………………………..
5.4.3.3 Дифференциальное включение ОУ………………....................
5.4.3.4 Сумматор на ОУ…………………………………………………. 5.4.3.5 Компараторы……………………………………………………...
Лекция 6. Генераторы гармонических колебаний. Генераторы прямоугольных импульсов…………………………………………………..  
6.1 Генераторы гармонических колебаний…………………………….
6.2 RC-автогенераторы гармонических колебаний…………………….
6.2.1 RC-автогенераторы на операционном усилителе………………...
6.3 Ключевой режим работы транзистора………………………………
6.4 Параметры импульсов………………………………………………..
6.5 Генераторы прямоугольных импульсов…………………………….
6.6 Силовые транзисторные ключи MOSFET и IGBT…………………
Раздел 4. Основы цифровой и микропроцессорной техники…………
Лекция 7. Логические функции…………………………………………
7.1 Описание логических функций……………………………………...
7.2 Логические вентили…………………………………………………..
7.2.1 Типы логических интегральных схем……………………………..
7.2.2 Транзисторно-транзисторная логика……………………………...
7.2.3 Логические схемы с тремя состояниями………………………….
7.2.4 МОП логика………………………………………………………...
7.2.5 КМОП логика……………………………………………………….
7.3 Триггеры на логических элементах…………………………………
7.3.1 Общие сведения о триггерах………………………………………
7.3.2 RS- триггеры………………………………………………………..
7.3.3 D-триггеры………………………………………………………….
7.3.4 Универсальные JK-триггеры………………………………………
7.3.5 Счетные Т-триггеры………………………………………………..
Лекция 8. Основы микропроцессорной техники……………………….
8.1 Системы счисления…………………………………………………..
8.2 Счетчики импульсов…………………………………………………
8.3 Микроконтроллеры…………………………………………………..
8.3.1 Принципы организации микроконтроллеров…………………….
8.3.2 Архитектура микропроцессоров и их функционирование………
8.3.3 Структура микроконтроллеров……………………………………
Список литературы………………………………………………………
   

 

 

Лекция 2. Полупроводниковые стабилитроны и светодиоды.

Биполярные транзисторы

Название транзистор происходит от английского Transfer Resistor – преобразующий сопротивление, а биполярный означает тот факт, что в процессе создания тока учавствуют носители зарядов двух типов – электроны и дырки.

Биполярный транзистор – это трехэлектродный полупроводниковый прибор с двумя взаимодействующими p-n-переходами и тремя выводами, обладающий усилительными свойствами.

Существует две полупроводниковые структуры биполярных транзисторов: p-n-p и

n-p-n типа (рис. 2.4.а и б соответственно). Биполярный транзистор имеет три чередующиеся полупроводниковые области различной проводимости - эмиттер (Э), база (Б), коллектор (К). Переход между эмиттером и базой (П1) называется эмиттерным, переход между базой и коллектором (П2) - коллекторным. База транзисторавыполняется тонкой, меньше диффузионной длины росителей заряда (несколько микрометров), то есть меньше , где D – коэффициент диффузии носителей заряда, τ – время жизни неравновесных носителей заряда.

 

 

Диффузионная длина L – это расстояние, на котором избыточная концентрация носителей заряда вследствие их рекомбинации уменьшается в е раз( 2, 7 раза). Для электронов и дырок диффузионная длина и время жизни величины разные.

В транзисторе степень легирования полупроводниковых областей разная: эмиттерная и коллекторная области – сильно легированы, база - слабо легирована, то есть обеднена основными носителями заряда (НЗ).

 

Схемы включения биполярных транзисторов

Существует три основных способа включения транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ) (рис. 2.5). При любом способе включения в цепь входного электрода включается источник входного сигнала, а в цепь выходного – нагрузка. Набольшее применение находит схема с ОЭ, т.к. она обладает наибольшим коэффициентом усиления по току. Рассмотрим её работу на примере p-n-p-транзистора. На рис. 2.6 в областях Э и К показаны только основные НЗ - дырки, в области Б – основные НЗ и не- основные НЗ. Источник Е2 смещает эмиттерный переход в прямом направлении; источник Е1– смещает коллекторный переход в обратном направлении. За счет источника Е2 через прямосмещенный эмиттерный переход начинается инжекция основных НЗ (дырок) из Э в Б транзистора, где они становятся неосновными НЗ.

 

Это дырочная составляющая эмиттерного тока. Электроны из Б инжектируются в Э, образуя электронную составляющую тока эмиттера. Но, поскольку база обеднена основными НЗ, то электронная составляющая тока эмиттера будет очень незначительной. Можно считать, что ток эмиттера полностью состоит из дырочной составляющей.

 

 

 
 

 


Большая часть дырок, инжектированных в Б, диффундирует к коллекторному переходу, захватывается полем этого перехода и перебрасывается из Б в К, создавая в коллекторной цепи ток, пропорциональный току эмиттера:

Iк' = aIэ,

 

где a - коэффициент передачи тока эмиттера. Обычно a близок к 1 (> 0, 99).

Кроме того, в цепи коллектора протекает собственный обратный ток Iк0 (за счет собственных неосновных НЗ - дырок в базе). То есть, полный ток коллектора

Iк = Iк' + Iк0 = aIэ + Iк0.

 

Небольшая часть дырок, попадая в область Б, рекомбинирует с основными НЗ базы - электронами, образуя ток базы Iб, величина которого небольшая - несколько % тока эмиттера.

Ток базы состоит из суммы очень небольшой электронной составляющей тока эмиттера и тока за счет рекомбинации некоторой части дырок с электронами в базе транзистора за вычетом обратного тока коллектора, то есть

 

Iб = Iэn + Iэ.рек - I к0.

 

Таким образом, в транзисторе существуют три тока, причем всегда ток эмиттера равен сумме двух токов - тока коллектора и базы:

 

Iэ = Iб + Iк.

 

Так как Iк aIэ, то то есть или Iк (1 - a) = a Iб, откуда

.

Величина b = называется коэффициентом передачи тока базы:

Iк = bIб.

Поскольку коэффициент a близок к 1, коэффициент b может достигать .

При включении с общей базой ток коллектора ,

где = – интегральный коэффициент передачи тока эмиттера , - обратный ток коллекторного перехода.

Схема с ОК обладает коэффициентом усиления по напряжению К U ≤ 1 и большим входным и малым выходным сопротивлениями. Её часто называют эмиттерным повторителем и используют для согласования высокоомных и низкоомных цепей.

2.3.1. Статические характеристики биполярных транзисторов

Для каждой схемы включения транзисторов существует четыре семейства статических характеристик:

- входные I ВХ = f(U ВХ) при U ВЫХ = const;

- выходные I ВЫХ = f(U ВЫХ) при I ВХ= const;

- передачи по току I ВЫХ = f(I ВХ) при U ВЫХ = const;

- характеристики обратной связи по напряжению U ВХ = f(U ВЫХ) при I ВХ = const;

Для схемы включения ОЭ общий вид входных и выходных характеристик приведен на рис. 2.7.

               
   
 
   
   
 
 

 

 


2.3.3. Динамический режим работы транзистора

 
Динамический режим – это режим, при котором в коллекторную цепь транзистора включен резистор (рис. 2.8).

 

Для транзистора, с включенным в коллекторную цепь сопротивлением нагрузки RК, справедливо соотношение:

, (2.1)

где - напряжение источника коллекторного питания. Таким образом, напряжение на выходе транзистора является функцией тока коллектора. Приведенному выше уравнению в системе координат выходных характеристик соответствует прямая линия, называемая нагрузочной прямой на постоянном токе (рис. 2.7 прямая MN). Её можно построить по двум точкам, если в уравнении (2.1) последовательно положить

= 0 и = 0 и найти точки M и N. Смысл нагрузочной прямой заключается в следующем. Каждому значению коллекторного тока соответствует конкретное значение и конкретное падение напряжения на нагрузке . Точка на нагрузочной прямой, соответствующая данному коллекторному току, называется рабочей точкой (точка Р на рис. 2.7). При линейном усилении (усилении без искажения формы сигнала), рабочая точка под действием управляющего базового сигнала будет перемещаться по нагрузочной прямой в пределах зоны статических характеристик, обеспечивая тем самым изменение выходного напряжения .

 

2.3.3. Параметры транзистора как четырехполюсника

Транзистор является нелинейным элементом, так как его характеристики определяются нелинейными зависимостями между токами и напряжениями. Однако, если входной сигнал по амплитуде будет меньше по сравнению с постоянным напряжением, соответствующим точке покоя, то в некоторой рабочей области участки статических ВАХ можно считать линейными. В этом режиме (режим малого сигнала) приращения между токами и напряжениями так же можно считать линейными, а транзистор представлять в виде четырехполюсника (рис. 2.9)

 

 
 

Связь между входными (U1, I1) и выходными (U2, I22) переменными четырехполюсника наиболее просто можно описать системой уравнений, в которой две величины являются независимыми, а две другие – зависимыми. Для транзистора практично принять независимыми входной ток I1 и выходное напряжение U2. Тогда зависимые величины можно выразить через независимые:

U1 = f1 (I1, U2); I2 = f2 (I1, U2). (2.2)

Если при малых изменениях независимых величин приращения зависимых величин разложить в ряд Тейлора и пренебречь членами второго и высших порядков, то (2.2) можно представить в виде:

∆ U1 = ∆ I1 + ∆ U2

∆ I2 = ∆ I1 + ∆ U2 (2.3).

Заменив приращения значениями токов и напряжений и введя для частных производных обозначение через параметр hij, (2.3) можно преобразовать к форме:

 

U1 = h11 I1 + h12 U2; I2 = h21 I1 + h22 U2 (2.4)

 

 

где - постоянные коэффициенты, которые принято называть -параметрами. Эти коэффициенты имеют определенный физический смысл:

· h11 = при U2 = const - входное сопротивление в режиме малого сигнала при коротком замыкании на выходе четырехполюсника;

· h12 = при I1 = const - коэффициент обратной связи по напряжению при холостом ходе на входе четырехполюсника;

· h21 = при U2 = const - коэффициент передачи тока в режиме малого сигнала при коротком замыкании на выходе четырехполюсника;

· h22 = при I1 = const - выходная проводимость в режиме малого сигнала при холостом ходе на входе четырехполюсника.

Эти параметры могут быть записаны для любой схемы включения биполярного транзистора. Для схемы ОЭ при замене дифференциала на приращения - параметры могут быть определены по статическим характеристикам транзистора:

h11 = ∆ Uбэ / ∆ I б при U кэ = const; h12 = ∆ U бэ /∆ U кэ при I б = const;

h21 = ∆ I к / ∆ I б при U кэ = const; h12 = ∆ I к /∆ U кэ при I б = const.

Используя - параметры в схемах замещения биполярного транзистора, можно достаточно просто проводить аналитический расчет схем на основе известных уравнений для линейных цепей.

 

 

 

Рис.2.10. Схема замещения БТ системой h-параметров

 

 

Полевой транзистор

Принцип действия полевого транзистора (ПТ) основан на использовании носителей заряда одного наименования (электронов или дырок), движение которых осуществляется через канал с изменяющейся посредством поперечного электрического поля проводимостью. Различают полевые транзисторы с управляемым p-n переходом и с изолированным затвором. Структура полевого транзистора с управляемым p-n переходом и каналом n-типа, а также условное графическое обозначение приведены на рис. 2.11.

В приведенной конструкции канал протекания тока представляет собой слой полупроводника n-типа, заключенный между двумя p-n переходами. Электрод, от которого двигаются носители зарядов (в данном случае электроны), называется истоком (Source), а электрод, к которому они движутся – стоком (Drain). Оба р-слоя электрически связаны между собой и имеют внешний электрод, называемый затвором (Gate). Перенос носителей заряда между истоком и стоком осуществляется под действием продольного электрического поля при UСИ > 0. При этом через канал протекает ток стока IC. Управляющие свойства полевого транзистора объясняется тем, что при подаче на затвор напряжения UЗИ < 0 под действием возникающего поперечного электрического поля увеличивается ширина p-n переходов (в основном за счет более высокоомного n-слоя). Это приводит к уменьшению сечения канала проводимости и уменьшению выходного тока IC. При UСИ = 0 сечение канала приблизительно одинаково по всей его длине. С ростом напряжения UСИ увеличивается падение напряжения в канале при протекании тока и уменьшение его сечений в направлении от истока к стоку (p-n переходы расширяются в направлении стока). Поскольку управление выходным током ПТ производится, как правило, напряжением входной цепи U ЗИ, для них представляет интерес переходная или стоко-затворная характеристика при UСИ = const (рис. 2.12, а).

Стоковые (выходные) характеристики ПТ с p-n переходом отражают зависимость тока стока от напряжения сток-исток при фиксированном напряжении затвор- исток при UЗИ = const. Входные характеристики – зависимость тока затвора от напряжения затвор-исток в полевых транзисторах не имеют практического применения. Это связано с тем, что при управлении током стока на затвор подается относительно истока отрицательное напряжение (см. рис. 2.11, а). При этом оба p-n

 

перехода находятся в закрытом состоянии, и через них и цепь затвор-исток протекает обратный ток p-n перехода, составляющий доли микроампер. Это определяет высокое входное сопротивление полевого транзистора , что выгодно отличает его от биполярного транзистора. Можно считать, что полевой транзистор практически не потребляет мощность по цепи управления.

В полевых транзисторах с изолированным затвором затвор отделен от токопроводящего канала слоем диэлектрика. Если в качестве диэлектрика используется окисел кремния SiO 2 , то такой транзистор называют МОП – транзистором (структура металл – окисел – полупроводник). Если изоляция между металлическим затвором и полупроводником осуществляется с помощью тонкой диэлектрической пленки, то такой прибор называют МДП-транзистором (металл – диэлектрик – полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 – 1014 Ом). Различают МОП и МДП-транзисторы со встроенным и индуцированным каналом проводимости (рис. 2.13, а и 2.13, б соответственно). ПТ данных типов имеют четвертый электрод, выводимый наружу, который носит название подложки (П).

 

ПТ со встроенным каналом работают в двух режимах: обеднения и обогащения. В режиме обеднения для ПТ со встроенным каналом n-типа на затвор необходимо подать напряжение UЗИ < 0. В этом случае поле затвора будет оказывать отталкивающее действие на электроны (носители заряда в канале), что приведет к уменьшению их концентрации в канале и снижению его проводимости, а, следовательно, и уменьшению тока стока. В режиме обогащения на затвор необходимо подать напряжение UЗИ > 0. В этом случае поле затвора притягивает электроны в канал из глубины р-слоя. Концентрация носителей заряда в канале увеличивается, проводимость канала возрастает и ток стока увеличивается.

В полевых транзисторах с индуцированным каналом (рис. 2.13, б – канал n-типа) канал проводимости специально не создается. Он образуется (индуцируется) вследствие притока электронов из р-слоя при приложении к затвору напряжения положительной полярности. В приповерхностной области при этом происходит изменение электропроводности полупроводника, т.е. индуцируется токопроводящий канал n-типа, который соединяет области истока и стока. Проводимость канала тем больше, чем больше приложенное к затвору положительное напряжение.

Примерный вид стоко–затворной характеристики и стоковых (выходных) характеристик ПТ с индуцированным каналом n-типа в схеме с общим истоком приведены на рис. 2.14.

Основными параметрами полевых транзисторов являются:

- внутреннее сопротивление при ; оно характеризует наклон выходной характеристики на участке насыщения;

 

- крутизна стоко–затворной характеристики при ; отражает влияние напряжения затвора на выходной ток транзистора. Крутизну S находят по стоко–затворной характеристике транзистора.

При включении в цепь стока резистора R C транзистор переходит в динамический режим работы (рис. 2.15).

 

 
 

 

 


Для транзистора, с включенным в цепь стока сопротивлением нагрузки RС, справедливо соотношение:

, (2.5)

где -напряжение источника питания. Таким образом, напряжение на выходе транзистора является функцией тока стока. Приведенному выше уравнению в системе координат выходных характеристик соответствует прямая линия NМ (рис. 2.15, б), называемая нагрузочной прямой на постоянном токе. Она может быть построена по двум точкам, если в уравнении (2.5) последовательно положить = 0 и = 0 и найти координаты точек N и M. Смысл нагрузочной прямой заключается в следующем. Каждому значению тока стока соответствует конкретное значение напряжения и конкретное падение напряжения на нагрузке . Точка на нагрузочной прямой, соответствующая данному току, называется рабочей точкой.

 

При линейном усилении (усилении без искажения формы сигнала) рабочая точка под действием управляющего напряжения затвора будет перемещаться по нагрузочной прямой в пределах зоны статических характеристик, обеспечивая тем самым изменение выходного напряжения .

2.5. Тиристоры и симисторы

Тиристор – это полупроводниковый прибор с тремя и более p-n переходами, в вольт-амперной характеристики которого имеется участок отрицательного дифференциального сопротивления. Исходя из принципа действия, тиристор является ключевым прибором, т.е. он может находиться в одном из устойчивых состояний равновесия – или включен или

Классификация. В зависимости от числа электродов различают диодные тиристоры (динисторы), имеющие два электрода или триодные (тринисторы), имеющие три электрода (рис. 2.16). В зависимости от способности пропускать ток в одном или двух направлениях тиристоры подразделяются на однопроводящие или двухпроводящие (симметричные тиристоры – симисторы). В триодных тиристорах управление состоянием производится пот цепи управляющего электрода. При этом могут выполняться либо одна, либо две операции изменения состояния прибора. Поэтому различают одно- и двухоперационные тиристоры. В однооперационных (незапираемых) по цепи управления осуществляется только

 

отпирание тиристора. Двухоперационные тиристоры допускают по цепи управления и отпирание (как в рассмотренном выше случае), так и запирание при подаче на управляющий электрод импульса отрицательной полярности относительно катода.

Принцип действия. Наиболее простой является четырехслойная полупроводниковая структура типа p1-n1-p2-n2 (рис.2.17). Крайние области, имеющие высокую концентрацию основных носителей заряда, называют эмиттерами, а центральные области (с низкой концентрацией носителей заряда) – базами. Электрод, присоединенный к эмиттеру р1, называют анодом, а к эмиттеру n2– катодом. Базы тиристора отличаются концентрацией примесных атомов и толщиной. База р2 имеет более высокую концентрацию примесных атомов и меньшую толщину, чем база n1. К базе р2 подсоединяют управляющий электрод. При отсутствии внешнего напряжения на p-n переходах тиристора П1–П3 устанавливается

 

состояние термодинамического равновесия, при котором токи дрейфа и диффузии, проходящие через p-n переходы, взаимно уравновешиваются. Общий ток тиристора равен нулю. Если на тиристор подать напряжение U АК прямой полярности (как на рис. 2.17), то эмиттерные переходы П1 и П3 будут включены в прямом направлении, а переход П2 – в обратном. Поскольку сопротивление открытых эмиттерных переходов невелико, то всё внешнее напряжение будет приложено к закрытому переходу П2. Дырки, инжектированные из эмиттера р +1, диффундируют через базу n 1 к закрытому p-n переходу, перебрасываются его полем в область базы р 2 и далее движутся катоду. Аналогичным образом происходит встречное движение электронов, инжектированных из n +2 эмиттера. При этом через тиристор проходит небольшой ток, зависящий от внешнего напряжения, инжекции эмиттерных p-n переходов, рекомбинации носителей заряда в базах, термогенерацией носителей заряда в базах и объеме обратно включенного коллекторного p-n перехода П2, а также эффектом лавинного размножения носителей заряда в объеме p-n перехода П2:

, (2.6)

где I КО обратный ток перехода П2, - коэффициент передачи дырочного тока через n 1 базу; - коэффициент передачи электронного тока через р 2 базу.

Если к управляющему электроду приложить положительное относительно

 

 

катода напряжение, то в цепи управляющего электрода потечет ток управления , увеличивающий общий ток тиристора и будет происходить снижение потенциального барьера p-n перехода П3. Уравнение (2.6) при этом примет вид:

(2.7)

Тиристор можно перевести из состояния низкой проводимости (закрыт) в состояние высокой проводимости (открыт) двумя способами. Первый способ связан с повышением напряжения анод-катод UАК , приложенным к тиристору прямой полярностью при токе управления . Повышение напряжения вызывает увеличение тока через коллекторный переход за счет увеличения тока утечки по поверхности перехода и умножения в нем носителей за счет их лавинного размножения в объеме p-n перехода П2. Рост тока в свою очередь вызывает увеличение коэффициентов и , что приводит к росту количества носителей заряда, инжектируемых эмиттерными p-n переходами и т.д. При достижении напряжения включения UВКЛ рост концентрации носителей заряда в закрытом p-n переходе П2 принимает лавинообразный характер и происходит скачкообразное включение тиристора (рис. 3.3). Ток через тиристор скачком возрастает до величины IA, определяемой внешним напряжением и сопротивлением нагрузки.

Второй способ включения связан с подачей напряжения положительной полярности на управляющий электрод тиристора относительно катода. В этом случае ток управления Iу, протекающий в цепи управляющего электрода, снижает потенциальный барьер p-n перехода П3, что приводит к увеличению коэффициента и росту тока через тиристор (составляющая Iу в выражении (2.7)). Вследствие этого, включение тиристора происходит при меньшем напряжении между анодом и катодом.

Выключение тиристора на постоянном токе, т.е. перевод его с рабочего участка de на участок bc или ab производится при снижении тока нагрузки до величины, меньшей тока удержания IУД или приложении обратного напряжения к тиристору.

Симметричные тиристоры (симисторы) предназначены для работы на переменном токе. Их можно представить как два встречно включенных параллельно тиристора, поэтому они имеют симметричную вольт-амперную характеристику, расположенную в первом и третьем квадрантах.

 
На практике тиристоры включают, как правило, с помощью импульсов управления. Процесс включения тиристоров зависит от многих факторов: параметров цепи управления, свойств полупроводниковой структуры и её температуры, параметров цепи нагрузки. Основные статические параметры цепи управления тиристоров определяют из диаграммы управления, характеризующей область токов и напряжений сигнала управления, при которых происходит включение тиристора (рис. 2.19). На этой диаграмме в системе международного обозначения показаны следующие параметры:

UG - постоянное напряжение управления;

IG - постоянный ток управления;

UGТ – отпирающее постоянное напряжение управления;

IGТ - отпирающий постоянный ток управления;

UFGM – прямое импульсное напряжение управления;

IFGM – прямой импульсный ток управления;

РGM – импульсная рассеиваемая мощность управления.

Границами диаграммы управления являются ВАХ цепи управляющего электрода, снятые при максимальной (левая кривая) и минимальной (нижняя кривая) температурах полупроводникового элемента, а также кривая импульсной рассеиваемой мощности управления, которая зависит от относительной длительности импульса.

 


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 545; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.085 с.)
Главная | Случайная страница | Обратная связь