Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Раздел 3. Электронные и импульсные устройства.



Усилители переменного напряжения; температурная стабилизация усилительного каскада; обратные связи в усилителях (пз); основные параметры.

Операционные усилители (ОУ); АЧХ ОУ; базовые схемы включения операционных усилителей; компараторы на ОУ.

Генераторы гармонических колебаний. Ключевой режим работы транзистора; параметры одиночного прямоугольного импульса и импульсной последовательности.

Генераторы прямоугольных импульсов (мультивибраторы).

Силовые транзисторные ключи MOSFET и IGBT.

Лекция 5. Усилители переменного напряжения; обратные связи в усилителях.

Операционные усилители (ОУ).

5.1. Электронные усилители. Классификация

Усилитель – устройство, увеличивающее мощность элетрических сигналов. Они строятся на базе типовых усилительных каскадов. Структурная схема усилительного каскада приведена на рис. 5.1. Ко входу усилителя подключается источник входного сигнала, который показан в виде генератора напряжения Ес с внутренним сопротивлением Rс . Входной сигнал – гармонические колебания синусоидальной формы. Этот маломощный сигнал прикладывается к входному сопротивлению Rвх каскада и управляет энергией источника питания большой мощности. В выходной цепи усилителя источник усиленного сигнала показан в виде генератора Евых с внутренним сопротивлением Rвых. Внешняя нагрузка Rн потребляет энергию усиленного сигнала.

По назначению различают усилители напряжения, тока и мощности.

 
 


Усилитель напряжения – когда входное сопротивление усилителя Rвх » Rс, а сопротивление нагрузки Rн » Rвых. Это обеспечивает относительно большие изменения напряжения на нагрузке при небольших изменения токов во входной и выходной цепях.

Усилитель тока – привыполнении условий Rвх « Rс и Rн « Rвых. При этих условиях обеспечивается протекание тока заданной величины в выходной цепи при малых значениях напряжения и мощности входной и выходной цепях.

Усилитель мощности – привыполнении условий Rвх ≈ Rс и Rн ≈ Rвых.

По характеру изменения во времени усиливаемого сигнала – усилители постоянного и переменного тока.

В зависимости от рабочего диапазона частот:

- низкочастотные (НЧ) – 20 Гц – 1мГц;

- видеоусилители – 1 – 30 мГц;

- высокочастотные (ВЧ) – 30 – 100 мГц;

- сверхвысокочастотные (СВЧ) > 100 мГц.

По виду усиливаемых сигналов – усилители гармонических и импульсных сигналов.

В зависимости от схемы включения транзистора, усилительные каскады выполняются по схемам с общим эмиттером, с общей базой и с общим коллектором. Наибольшее распространение получила схема усилительного каскада с общим эмиттером.

5.2. Усилительный каскад по схеме с общим эмиттером

Усилительный каскад по схеме с общим эмиттером, его эквивалентная схема и временные диаграммы сигналов показаны на рис. 5.2.

Рис. 5.2. Усилительный каскад по схеме с ОЭ: а – принципиальная схема; б – временные диаграммы сигналов; в – эквивалентная схема

Назначение элементов схемы:

ес - источник сигналов с внутренним сопротивлением Rс.

R1, R2 – делитель напряжения, смещающий эмиттерный переход в прямом направлении и определяющий начальный режим работы усилителя совместно с резистором Rэ. Через делитель течет ток делителя Iд, создающий падение напряжения на R2, приложенное минусом к базе, а плюсом через Rэ к эмиттеру транзистора.

Ср1, Ср2 – разделительные конденсаторы небольшой емкости, пропускающие переменную составляющую соответственно входного и усиленного выходного сигналов и не пропускающие постоянную составляющую (для постоянной составляющей конденсатор Ср – разрыв цепи).

Rэ, Сэ - цепочка последовательной ООС по постоянному току эмиттера. Она служит для термостабилизации режима работы усилителя: постоянная составляющая тока Iэ0 создает на Rэ падение напряжения, плюс которого через R2 приложен к базе транзистора, а минус к эмиттеру. Величина этого падения напряжения зависит от температуры: с ростом


 
 
 


температуры – увеличивается, при снижении температуры – уменьшается. Переменная составляющая тока эмиттера проходит через конденсатор Сэ большой емкости, сопротивление которого переменному току Хс мало. Поэтому ООС по переменному току практически отсутствует.

Rк - резистор коллекторной нагрузки усилителя. Совместно с транзистором VТ определяет коэффициент усиления усилителя.

Сф - конденсатор фильтра большой емкости (блокировочный конденсатор), выполняет две функции:

- шунтирует источник питания Ек, предотвращая прохождение переменных токов через большое внутреннее сопротивление источника Ек;

- подпитывает схему усилителя энергией при возможных кратковременных перегрузках источника питания Екф заряжен постоянным напряжением, равным Ек).

Поскольку транзистор является нелинейным элементом, для усиления сигнала без искажений амплитуды и частоты, его необходимо настроить в режиме покоя (при отсутствии входного сигнала) в одном из классов работы А, Б, В и т.д. Этот начальный режим работы усилителя характеризуется постоянными составляющими тока коллектора Iк.0 , напряжения коллектора Uкэ.0, напряжения Uбэ.0 и тока базы Iб.0.

В режиме покоя через транзистор текут токи

 

Iэ0 = Iк0 + Iб0.

 

Определим положение рабочей точки в режиме покоя с учетом Rэ и класса работы А. Для этого на семействе выходных статических характеристик транзистора (рис. 5.3) необходимо построить динамическую характеристику. Уравнение динамической характеристики (линии нагрузки) усилителя ОЭ в этом случае

Uк = Eк – IкRк – IэRэ = Eк – Iк (Rк + Rэ / α ).

       
   
 
 
Uбэ 0 n
Р

 


Для крайних случаев: при Uк = 0 Iк = ; при Iк = Iэ = 0 Uк = Eк. По этим двум крайним точкам - M (Uк = 0; Iк = ) и N (Uк = Eк; Iк = 0) строится линия нагрузки MN. При работе в классе «А» рабочую точку Р0 в режиме покоя выбирают в средней части линейного участка входной характеристики транзистора.

Ток IБ0 определяется из величины прямого смещения эмиттерного перехода:

, где Uб = Ек и Rб = .

 

Таким образом, рабочей точке исходного режима Р0 соответствуют координаты Iб0 и Uбэ0 (рис.5.3.). Перенося точку Р0 на выходные статические характеристики, можно получить рабочую точку усилителя Р2 и на нагрузочной прямой с координатами Iк0 и Uкэ0. Пунктирные участки на входных и выходных характеристиках определяют линейный диапазон изменения входного и выходного сигналов.

Физические процессы в усилителе с ОЭ поясняют временные диаграммы (см. рис. 5.2, в). На них входное напряжение усиливаемого сигнала отличается от напряжения источника сигнала вследствие наличия Rс и составляет величину

Uвх = Ес ,

 

где Rвх – входное сопротивление усилителя.

Прямое напряжение на базе транзистора будет изменяться по закону входного сигнала. По этому же закону будут меняться и другие физические величины в транзисторе: в фазе с входным сигналом - потенциальный барьер эмиттерного перехода, токи транзистора Iэ = Iк + Iб, падение напряжения на Rк, создаваемое током коллектора; в противофазе по отношению к входному сигналу будет меняться напряжение на коллекторе транзистора, причем амплитудный размах IкRк и Uк будет одинаков.

Например, положительная полуволна входного усиливаемого сигнала уменьшает величину прямого смещения эмиттерного перехода на величину входного сигнала, то есть увеличивается потенциальный барьер эмиттерного перехода. Это ведет к уменьшению инжекции основных носителей заряда из эмиттера в базу, то есть к уменьшению тока Iэ = Iк + Iб. Выходной ток транзистора Iк создает меньшее падение напряжения IкRк, то есть ведет к росту отрицательного напряжения на коллекторе. С выхода усилителя (с коллектора транзистора) через Ср2 снимается отрицательная полуволна усиленного сигнала.

При подаче на вход отрицательной полуволны усиливаемого сигнала физические процессы аналогичны: увеличится прямое смещение эмиттерного перехода, уменьшится его потенциальный барьер, увеличится инжекция основных носителей заряда из эмиттера в базу, то есть увеличатся токи транзистора, в том числе и выходной ток Iк, увеличится падение напряжения на Rк, уменьшится отрицательное напряжение на коллекторе, через Ср2 снимется положительная полуволна усиленного сигнала.

Таким образом, усилитель с ОЭ усиливает сигнал по напряжению и току и меняет фазу выходного сигнала на 1800 по отношению к входному сигналу.

Основные параметры усилителя с ОЭ:

1. Входное сопротивление Rвх h11 (сотни Ом…единицы кОм).

2. Выходное сопротивление Rвых Rк (единицы…десятки кОм).

3. Коэффициент усиления по току

 

Ki = = (десятки - сотни).

 

Коэффициент усиления по напряжению

 

Кu = (десятки - сотни)

знак минус указывает на изменение фазы выходного сигнала по отношению к входному.

Коэффициент усиления по мощности

Kp = |Кi|·|Кu| = Rн

5.3. Эмиттерный повторитель

 

На рис. 5.4 приведены принципиальная и эквивалентная схемы эмиттерного повторителя и временные графики, поясняющие его работу. Эмиттерный повторитель - это усилитель с ОК, так как по переменной составляющей коллектор транзистора через блокировочный конденсатор Сф заземлен на корпус. Это усилитель со 100 % ООС, так как выходное падение напряжения IэRэ полностью приложено через R2 к входу транзистора в противофазе, то есть Uб = Uвх – Uвых, откуда Uвых = Uвх – Uб. Тогда коэффициент усиления по напряжению будет

 

KU = .


Так как Uб составляет десятые доли вольта и Uвх чуть больше Uвых, то коэффициент усиления по напряжению получается чуть меньше единицы (Ku < 1). То есть по напряжению эмиттерный повторитель не усиливает.

Коэффициент усиления по току

 

Ki = ,

то есть Ki = 1 + β.

Эмиттерный повторитель - это усилитель тока: KiI > > 1.

Коэффициент усиления по мощности Ku = KiKu Ki.

Выходное сопротивление Rвых = = R’н очень мало (десятки Ом).

 

Входное сопротивление Rвх = = Rвых(1 + β ) велико и составляет сотни килоом.

С подачей на базу положительной полуволны входного сигнала отрицательный потенциал базы уменьшится, увеличится потенциальный барьер эмиттерного перехода. Транзистор призакроется: ток эмиттера уменьшится, уменьшится минус на эмиттере, с выхода через Ср2 снимется положительный выходной сигнал.

Отрицательная полуволна входного сигнала увеличит минус на базе, то есть уменьшит потенциальный барьер эмиттерного перехода, что приведет к приоткрытию транзистора: эмиттерный ток увеличится, увеличится минус на эмиттере, с выхода снимется отрицательный сигнал.

Таким образом, выходной сигнал снимается с эмиттера, сам усилитель повторяет сигнал по амплитуде (Кu чуть меньше единицы) и по фазе (по полярности); отсюда он и получил свое название – эмиттерный повторитель.

Так как Uб = Uвх – Uвых, то на вход эмиттерного повторителя можно подавать сигналы с большой амплитудой, вплоть до величины, равной Ек.

Обладая очень высоким входным и очень малым выходным сопротивлениями, эмиттерный повторитель широко используется в блоках детектирования АД и РТК для согласования высокого сопротивления детектора ИИ с низким волновым сопротивлением коаксиального кабеля.

Операционные усилители (ОУ

5.4.1. Общие сведения об операционных усилителях

В классической электронике операционным усилителем принято называть линейный преобразователь, при помощи которого можно осуществлять различные математические операции – суммирование, вычитание, интегрирование, дифференцирование и др. Это и определило название таких усилителей – операционные (решающие), на основе которых путем введения обратных связей можно проводить математические операции. Интегральные ОУ предназначены не только для выполнения математических операций, но и для осуществления преобразования сигналов (усиления, обработки, формирования сигналов).

Условное графическое изображение и функциональное обозначение ОУ приведено на рис. 5.5.

Современные ОУ строятся по схеме прямого усиления с дифференциальными равноправными по электрическим параметрам входами (инверсный вход «○ » или «− » и неинверсный вход – без обозначения или «+») и двухтактным двухполярным (по амплитуде сигнала) выходом. Основным элементом ОУ является входной каскад, построенный по схеме дифференциального усилителя (ДУ), назначение которого – усиление разности сигналов, наблюдаемой между его входами (рис. 5.6, а). ДУ имеет два транзистора VT1 и VT2 с коллекторными нагрузочными резисторами RК. Эмиттерные токи этих транзисторов формируются с помощью генератора стабильного тока (ГСТ) I0 , выполненного на транзисторах VT3 и VT4. При идентичности параметров транзисторов VT1 и VT2, равенстве коллекторных резисторов и условии, что входные сигналы U = U+ = 0, разность выходных сигналов ДУ будет равна нулю, поскольку для идеального ДУ эмиттерный ток I0 делится пополам между транзисторами VT1 и VT2.

 

И

 

Из теории дифференциальных усилителей известно, что в режиме баланса потенциал каждого выхода имеет относительно земли синфазный уровень напряжения: .

Режиму баланса соответствует диаграмма (рис. 5.6, б) до момента времени t1. При появлении в момент t1 сигнала U транзистор VT1 получает больший ток смещения и его коллекторный ток IK1 увеличивается, а ток транзистора VT2 уменьшается, так как

IK1 + IK2 = I0. Таким образом, с увеличением входного напряжения U, выходное напряжение на выходе первого транзистора уменьшается (приращение сигнала инвертировано по фазе). На другом выходе ДУ напряжение будет увеличиваться (приращение сигнала не инвертировано по фазе). Полный дифференциальный выходной сигнал между выходами ДУ определяется соотношением:

Изменение выходных сигналов прекращается, когда весь ток I0 начинает течь через транзистор VT1. В момент времени t2 транзистор VT2 переходит в режим отсечки. Поскольку входное сопротивление ДУ обратно пропорционально величине его рабочего тока I0 , то этот ток задается обычно небольшим (десятки микроампер), а это в свою очередь определяет низкий коэффициент усиления ДУ:

,

где - крутизна биполярного транзистора. В связи с этим, в интегральных ОУ используются последующие каскады усиления для получения большой величины коэффициента усиления по напряжению. В общем виде коэффициент усиления по напряжению ОУ равен произведению коэффициентов усиления всех его каскадов: .

Абсолютные значения входных напряжений U, U+ и UВЫХ ограничены напряжением питания операционного усилителя +Uпит и − Uпит − (≤ ± 15 В). Типичным свойством передаточной характеристики ОУ является то, что она чувствительна к разности входных напряжений и не зависит от их абсолютных значений. Из этого свойства вытекает введение двух понятий: синфазного входного напряжения UСИНФ для общей составляющей напряжений на обоих их входах, которая должна быть подавлена усилителем, и дифференциального входного напряжения UД, на которое усилитель реагирует:

, ,

где К = 1/2 или 0.

Для упрощения определения параметров ОУ обычно полагают К = 0, тогда UСИНФ =U+ .

Интегральные ОУ обычно состоят из входного дифференциального каскада, каскадов усиления, каскада, преобразующего двухфазный выход дифференциального усилителя в однофазный и каскада для сдвига уровня. На выходе усилителя используется эмиттерный повторитель на комплементарных транзисторах, обеспечивающий передачу сигналов как положительной, так и отрицательной полярности. В современных ОУ К0 достигает величины порядка 1*105 и более.

При рассмотрении и анализе схемных решений на основе операционных усилителей и выводе основных соотношений, часто используется понятие идеального операционного усилителя. В идеальном ОУ принято считать:

· операционный усилитель обладает бесконечно большим входным и нулевым выходным сопротивлением;

· входы ОУ симметричны и не потребляют ток;

· напряжение между входами ОУ равно нулю;

· коэффициент усиления по напряжению ОУ стремится к бесконечности, а напряжение на выходе равно нулю при отсутствии входных сигналов.

5.4.2. Амплитудно-частотная характеристика ОУ

 

 

 
 

Амплитудно-частотная характеристика (АЧХ) ОУ – зависимость коэффициента усиления по напряжению от частоты. Любой многоканальный усилитель на высоких частотах может быть представлен схемой замещения (рис. 5.7), в которой генератор сигнала К0 UВХ нагружен на ряд интегрирующих RC цепочек, число которых равно числу каскадов ОУ (R и C - соответственно собственная передаточная проводимость и емкость нагрузки каскада).

Коэффициент передачи по напряжению одной RC цепочки:

, (5.1)

где - круговая частота среза.

Соответственно частота среза . Модуль АЧХ RC цепочки определяется соотношением:

. (5.2)

 

 
 

Вид АЧХ для двухкаскадного ОУ в соответствии со схемой замещения представлен на рис. 5.8 (кривая 1), где частота и коэффициент усиления отложены в логарифмическом масштабе. Коэффициент усиления измеряется в децибелах (1 дБ = 20lg K). Изменяя частоту в десять раз (на декаду), получаем уменьшение коэффициента усиления так же в десять раз (падение усиления на 20 дБ). Как видно из рисунка, на низких частотах К асимптотически приближается к величине коэффициента усиления без обратной связи К0. С ростом частоты за частотой среза fср1, на которой К снижается до значения 0, 707 К0 (на 3 дБ), скорость высокочастотного спада равномерна и составляет 20 дБ / дек. В многокаскадном усилителе каждый каскад имеет собственную передаточную проводимость и емкость нагрузки, поэтому на частоте fср2 для второго каскада скорость высокочастотного спада будет составлять уже 40 дБ / дек. Современные операционные усилители имеют скорректированную АЧХ [8], которая для ОУ без обратной связи имеет вид кривой 2. Сростом частоты усиление падает и график пересекает линию ноль децибел на частоте единичного усиления ft. Эта частота определяет активную полосу частот ОУ, в которой коэффициент усиления К≥ 1. Произведение частоты входного сигнала на коэффициент усиления без обратной связи К равно полосе единичного усиления ft = К fВХ. Для исключения амплитудно-фазовых искажений в заданной полосе частот необходимо в этой полосе обеспечить равномерность амплитудной характеристики. Это достигается введением в ОУ отрицательной обратной связи (ООС). При увеличении глубины ООС (уменьшении коэффициента усиления ОУ) расширяется полоса частот равномерной амплитудной характеристики (кривая 3). Диапазон частот от нуля до верхней предельной частоты fb носит название полосы пропускания на малом сигнале, которая связана с полосой единичного усиления ОУ с ООС соотношением fb = ft КОС , где КОС - коэффициент усиления с обратной связью.

5.4.3. Схемы включения операционных усилителей

Число схем на ОУ непрерывно увеличивается по мере развития элементной базы и появления новых ОУ, поэтому особенно важным является знание принципов построения и анализа так называемых типовых (базовых) схем включения ОУ. Существует три базовые схемы включения операционных усилителей:

- инвертирующее включение ОУ;

- неинвертирующее включение ОУ;

- дифференциальное включение ОУ.

Эти схемы являются основой для построения других схем на операционных усилителях и расчета их параметров. При анализе базовых схем и упрощении расчета их параметров часто используется понятие идеального операционного усилителя. Рассмотрим базовые схемы включения ОУ.

5.5.3.1. Инвертирующее включение ОУ

Эквивалентная схема инвертирующего включения ОУ приведена на рис. 5.9. В этой схеме входной сигнал и сигнал обратной связи поступают на инверсный вход ОУ. Введение ООС приводит к тому, что теперь схема обладает коэффициентом усиления с обратной связью КОС. Определим значение КОС исходя из свойств идеального ОУ.


 

Считаем напряжение между входами равным нулю. Тогда потенциал неинверсного входа и потенциал инверсного входа, а следовательно и потенциал точки А (точка суммирования токов) также равен нулю. При условии, что входное сопротивление ОУ RВХ достаточно велико, можно считать, что ток от источника сигнала iC = UC / R1 протекает только по резистору обратной связи RОС, создавая на нем падение напряжения:

. (5.3)

Падение напряжения на резисторе RОС с большой точностью равно напряжению выхода UВЫХ , так как потенциал левого выхода резистора RОС (точка А) равен нулю (искусственный нуль-потенциал схемы). Следовательно, можно записать:

.

Коэффициент усиления по напряжению с обратной связью:

(5.4)

Знак минус в выражении (4.4) показывает, что напряжение на выходе ОУ находится в противофазе с входным напряжением. В реальном ОУ с учетом ограниченного значения коэффициента усиления К0 выражение для КОС имеет вид:

. (5.5)

Входное сопротивление при инвертирующем включении ОУ можно считать приближенно RВХ ≈ R1. Выходное сопротивление

где RВЫХ.0 - выходное сопротивление ОУ без обратной связи.

Примечание. Сопротивление RC в этой схеме и далее служит для уменьшения токов смещения ICM в схемах на операционных усилителях.

5.4.3.2. Неинвертирующее включение ОУ


Эквивалентная схема неинвертирующего включения ОУ приведена на рис. 5.10.

 

 

В этой схеме напряжение обратной связи создается делителем R1 – RОС:

. Считая, что напряжение между входами ОУ близко к нулю, можно записать, что UOC = UC , откуда коэффициент усиления по напряжению:

. (5.6)

Входное сопротивление при неинвертирующем включении ОУ велико и определяется приближенно соотношением:

. (5.7)

Выходное сопротивление где β =R1/ROC.

5.4.3.3. Дифференциальное включение ОУ

Эквивалентная схема дифференциального включения ОУ приведена на рис. 5.11. Она представляет собой сочетание инвертирующей и неинвертирующей схем включения и дает возможность получить разность двух входных сигналов с заданным коэффициентом усиления.

 

 

Для получения коэффициента усиления по напряжению данной схемы по-прежнему считаем, что разность напряжений на входах ОУ равна нулю, а токи сигналов не ответвляются на его входы. Составим систему уравнений для напряжений на инверсном и неинверсном входах:

- инверсный вход:


, откуда напряжение на инверсном входе ; (5.8)

- неинверсный вход:

(5.9)

Учитывая, что для идеального ОУ напряжение между входами равно нулю , решая совместно (9.7) и (9.8) получим выражение для

выходного напряжения:

(5.10)

где n =ROC /RВХ = nR/R – коэффициент усиления усилителя с обратной связью. Если сопротивления в схеме отличаются, тогда выходное напряжение может быть определено:

. (5.11)

5.4.3.4. Сумматор на ОУ

 
 

По аналогии со схемами включения ОУ различают инвертирующий и неинвертирующий сумматоры. Схема инвертирующего сумматора приведена на рис. 5.12. Исходя из принципа суперпозиции, напряжение на выходе инвертирующего сумматора может быть определено соотношением:

, где KOC i =ROC /Ri – коэффициент передачи i – го входного сигнала по инвертирующему входу. В схеме неинвертирующего сумматора входные напряжения подаются на неинверсный вход, а все резисторы, за исключением сопротивления обратной связи ROC, делают одинаковыми. Напряжение на выходе такого сумматора определяется соотношением:

5.4.3.5. Компараторы

Компаратор (от английского Compare) – это устройство, сравнивающее напряжение сигнала на одном из входов с опорным напряжением на другом входе. При использовании в качестве компаратора ОУ, на его выходе будет устанавливаться положительное или отрицательное напряжение насыщения ±Uнас. Обычно в ОУ напряжение насыщения и напряжение питания связаны соотношением: ±Uнас = ± 0, 9 Uпит . Компараторы применяют во многих устройствах и схемах, например:

- в триггере Шмитта или схеме, преобразующей сигнал произвольной формы в прямоугольный или импульсный сигнал;

- в детекторе нуля – схеме, индицирующей момент и направление прохождения входного сигнала через 0 В;

- в детекторе уровня - схеме, индицирующей момент достижения входным напряжением данного уровня опорного напряжения,

- в генераторе сигналов треугольной или прямоугольной формы и т.п.

Отличительной особенностью компараторов является отсутствие ООС, т.е. коэффициент усиления по напряжению определяется собственным коэффициентом усиления К0 ОУ.

На рис. 5.13. изображена схема компаратора, чувствительная к напряжению на входе (− ). В этой схеме входной сигнал подается на инверсный вход, а неинверсный вход служит для задания опорного напряжения Uоп. Поскольку в схеме компаратора задействованы оба входа, то для анализа его работы и поведения выходного напряжения следует использо-


 

вать третью базовую схему включения – дифференциальное включение ОУ и соотношение (5.10).

В случае когда Uоп = 0, схема компаратора работает как детектор нуля (рис.5.13.б). В том случае, когда UВХ положительно (в течение первого полупериода), UВЫХ равняется − UНАС , поскольку потенциал входа (+) меньше потенциала входа (− ) (см. рис. 5.13. б). Во второй полупериод, когда UВХ отрицательно, UВЫХ будетравно +UНАС , так как потенциал входа (+) больше потенциала входа (− ). Таким образом, UВЫХ показывает, когда UВХ положительно или отрицательно по отношению к нулевому опорному напряжению.

Когда Uоп > 0 схема компаратора работает как детектор уровня (рис. 5.13. в). На интервале M – N UВЫХ равно − UНАС , поскольку потенциал входа (+) меньше потенциала входа (− ) (Uоп < UВХ ). При UВХ < Uоп (интервал N – K) UВЫХ равно +UНАС .

Если поменять местами входы подачи входного напряжения и формирования опорного, то можно получить схему компаратора, чувствительную к напряжению на входе (+).

На практике в некоторых случаях напряжение входа может колебаться относительно опорного уровня. Такие колебания более чем вероятны из-за неизбежных наводок на провода, подходящие к входным зажимам ОУ (напряжение шумов). В этом случае напряжение UВЫХ будет колебаться от одного уровня насыщения к другому, что может приводить к ложным срабатываниям устройств сигнализации, измерения или исполнительных механизмов. С целью предотвращения реакции выходного напряжения на ложные пересечения опорного уровня, в компараторы вводят положительную обратную связь (ПОС). Такие компараторы носят название компараторы с ПОС или регенеративные компараторы, триггеры Шмитта. ПОС осуществляется путем подачи на неинверсный вход некоторой части выходного напряжения UВЫХ с помощью резистивного делителя R3 - R4 (рис. 5.14). Напряжение, формируемое резистивным делителем, будет иметь различные значения, поскольку оно зависит от знака UВЫХ . Оно называется верхним или нижним пороговым напряжением и в компараторах с ПОС устанавливается автоматически:

. (5.12)

 

Положительная обратная связь создает эффект спускового механизма, ускоряя переключение UВЫХ из одного состояния в другое. Как только

UВЫХ начинает изменяться, возникает регенеративная обратная связь, заставляющая UВЫХ изменяться ещё быстрее. В момент времени равный нулю (рис. 5.14. а, б), UВХ отрицательно, поэтому выходное напряжение равно +UНАС и на неинверсном входе будет установлен порог UП.В.. В момент времени t1 напряжение UВХ > +UНАС и компаратор переключается по выходу в напряжение − UНАС . При этом на неинверсном входе установится порог UП.Н. . Очередное переключение компаратора произойдет в момент t2, когда UВХ станет более отрицательным чем напряжение − UНАС .Если пороговые напряжения превышают по величине амплитуду шумов, то ПОС не допустит ложных срабатываний на выходе (рис. 5.14. а, б). Диапазон напряжений − UНАС ≤ U ≤ +UНАС носит название «Гистерезис» или «Зона нечувствительности».

 

 
 

 

 


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 372; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.102 с.)
Главная | Случайная страница | Обратная связь