Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
РЕАКЦИИ МЕТАБОЛИЧЕСКОЙ ТРАНСФОРМАЦИИ Окисление
В ЭПР функционируют НАДФ- и НАД-зависимые дыхательные цепи, коферментами которых служат никотинамидадениндинуклеотидфосфат (НАДФ) и никотинамидадениндинуклеотид (НАД) соответственно. В НАДФ-зависимой системе терминальным переносчиком электронов служит цитохром Р-450 - мембраносвязанный липофильный фермент группы многоцелевых монооксигеназ1. Цитохром P-450 имеет строение гемопротеина: состоит из глобулярного белка и железопротопорфиринового комплекса (атом железа в степени окисления +3, порфириновый макроцикл, осевые лиганды). Буква Р в названии происходит от слова пигмент, число 450 означает, что восстановленный, связанный с оксидом углерода цитохром наиболее активно поглощает излучение с длиной волны 450 нм. Цитохром Р-450 глубоко погружен в липидный бислой мембраны ЭПР и функционирует совместно с НАДФ-зависимой цитохром P-450-редуктазой. Соотношение количества молекул цитохрома Р-450 и редуктазы составляет 10: 1. Активные центры этих ферментов ориентированы на цитоплазматическую поверхность ЭПР. Цикл окисления лекарственных средств при участии цитохрома Р-450 состоит из следующих реакций (рис. 3-1). • Окисленный цитохром Р-450 соединяется с лекарственным средством. • Комплекс «цитохром-лекарство» восстанавливается цитохром Р-450-редуктазой с использованием электрона НАДФН. • Восстановленный комплекс «цитохром-лекарство» связывается с молекулярным (триплетным) кислородом. • Кислород активируется электроном НАДФН (триплетный кислород становится синглетным). • На финальном этапе один атом кислорода включается в молекулу окисляемого лекарственного средства, второй - в молекулу воды. • Цитохром Р-450 регенерирует в исходную окисленную форму. НАД-зависимая дыхательная цепь включает цитохром b5, НАДН-цитохром b5-редуктазу и стероил-КоА-десатуразу. Гемсодержащий фермент цитохром b5 представляет собой двухдоменный белок. Глобулярный цитозольный домен связывается с редуктазой, короткая спирализованная гидрофобная цепь погружена в мембрану ЭПР. Электроны от НАДН переносятся редуктазой на окисленный атом железа цитохрома b5. Стероил-КоА-десатураза катализирует образование двойных связей в жирных кислотах. Рис. 3-1. Механизм окисления лекарственных средств при участии цитохрома Р-450 Суперсемейство цитохромов Р-450 поражает своими почти неограниченными метаболическими возможностями. Оно включает более 1000 клонированных вариантов, способных катализировать около 60 типов ферментативных реакций с тысячами субстратов, как эндогенных (стероиды, жирные кислоты, простагландины, лейкотриены, цитокины, биогенные амины), так и ксенобиотиков. В клетках человека обнаружено 18 семейств цитохрома Р-450, разделенных на 44 подсемейства. Названия изоферментов цитохрома Р-450 обозначаются символом CYP, первая цифра обозначает семейство, затем следует латинская буква, указывающая подсемейство, последняя цифра соответствует конкретному полипептиду. В молекулах изоферментов одного семейства идентичны более 40% аминокислот, в молекулах одного подсемейства - более 55%. 1 Монооксигеназы включают кислород в окисляемые субстраты. Метод фенотипирования позволяет установить субстратную специфичность изоферментов цитохрома Р-450 по соотношению концентраций неизмененного вещества и его метаболитов в крови. Методом генотипирования с помощью полимеразной цепной реакции изоферменты идентифицируют по их генам, так как каждый изофермент кодируется одним из 53 генов, локализованных в разных локусах хромосом. Большинство реакций катализируют изоферменты цитохрома Р-450 семейств 1, 2 и 3 (рис. 3-2, табл. 3-2). Рис. 3-2. Изоферменты цитохрома Р-450
Таблица 3-2. Содержание изоферментов цитохрома Р-450 в печени человека, локализация в хромосомах, индукторы и ингибиторы
Реакции окисления, катализируемые цитохромом Р-450, могут расщепляться с образованием свободных радикалов кислорода и токсических промежуточных продуктов (эпоксидов, N-, S-окисей, альдегидов). Свободные радикалы и активные интермедиаты, инициируя перекисное окисление мембранных липидов, вызывают некроз клеток, мутации, тератогенный и эмбриотоксический эффекты, способствуют появлению неоантигенов, провоцируют канцерогенез и ускоряют старение. По этой причине не существует абсолютно безвредных ксенобиотиков. Токсические продукты биотрансформации обезвреживаются конъюгацией с восстановленным глутатионом и ковалентным связыванием с альбуминами. Повреждение молекулы альбумина неопасно, так как этот белок синтезируется в печени со скоростью 10-16 г в день и присутствует в высоких концентрациях в ЭПР. Ксенобиотики в процессе окисления могут разрушать цитохром Р-450. Такие вещества получили название «суицидные субстраты». Свойствами суицидных субстратов обладают четыреххлористый углерод, галотан и парацетамол, преобразуемые цитохромом Р-450 в свободные радикалы. Эффект этих веществ можно рассматривать не только как токсический, но и как протективный: под их влиянием элиминируются молекулы цитохрома Р-450, генерирующие реакционно-способные метаболиты. Восстановление Реакции восстановления характерны для альдегидов, кетонов и карбоновых кислот. Многие реакции восстановления и окисления катализируются одним и тем же ферментом, так как они обратимы (например, восстановление-окисление продукта метаболизма этанола - ацетальдегида). Восстанавливаются окисленные метаболиты лекарственных средств: кетоны и карбоновые кислоты. Ароматические соединения, содержащие нитрогруппу, подвергаются в анаэробных условиях нитроредукции. Промежуточные продукты этой реакции - нитрозо- и гидроксиламиносоединения. В печени функционируют микросомальная и цитоплазматическая нитроредуктазы, в кишечнике - бактериальная нитроредуктаза. Лекарственные средства с азогруппой восстанавливаются в первичные амины в микросомах печени и кишечной микрофлорой; например, салазодиметоксин, применяемый для лечения язвенного колита, расщепляется по азосвязи с образованием сульфаниламида и аминосалициловой кислоты. Гидролиз Гидролиз необходим для биотрансформации лекарственных средств, имеющих строение сложных эфиров и замещенных амидов. Реакции гидролиза протекают в цитозоле и ЭПР гепатоцитов и эпителия кишечника, а также в крови при участии эстераз и амидаз. При гидролизе молекулы лекарственных средств распадаются на фрагменты, которые могут (чаще только один из фрагментов) проявлять фармакологическую активность. В медицинской практике применяют пролекарства, активируемые гидролазами. Например, хлорамфеникол имеет горький вкус, поэтому в состав лекарственных форм для приема внутрь он входит в виде стеарата, а активное вещество образуется в кишечнике. В формы для инъекций хлорамфеникол включают в виде растворимого сукцината, который гидролизуется с высвобождением антибиотика под действием гидролаз тканей. РЕАКЦИИ КОНЪЮГАЦИИ Из всех реакций конъюгации наибольшее значение имеет глюкуронирование - присоединение активированной уридиндифосфатом (УДФ) глюкуроновой кислоты к алифатическим, ароматическим спиртам, карбоновым кислотам, веществам с аминогруппой и сульфгидрильной группой. Глюкуронирование катализирует УДФ-глюкуронилтрансфераза. Этот фермент функционирует в ЭПР и цитозоле клеток печени, почек, кишечника, кожи. Семейство глюкуронилтрансфераз включает более 20 изоферментов (табл. 3-3). O-, N- и S-глюкурониды хорошо растворяются в воде и экскретируются с мочой и желчью. Глюкурониды, экскретируемые с желчью, в кишечнике под влиянием бактериальной β -глюкуронидазы превращаются в исходные липофильные вещества и повторно всасываются в кровь, что дает начало энтерогепатической циркуляции. В энтерогепатическую циркуляцию вовлекаются стероидные гормоны, гликозиды наперстянки, хлорамфеникол. Сульфатирование - перенос неорганического сульфата с 3'-фосфоаденозил-5'-фосфосульфата на гидроксильную группу алифатических спиртов и фенолов при участии цитозольного фермента сульфотрансферазы. Некоторые лекарственные средства в малых дозах образуют сульфоконъюгаты, в больших дозах - глюкурониды. Таблица 3-3. Изоферменты УДФ-глюкуронилтрансферазы, их субстраты, локализация генов изоферментов
При ацетилировании ацетил-радикал переносится с коэнзима А (КоА) на молекулы аминов, гидразинов, сульфаниламидов. Реакцию катализирует ацетилтрансфераза цитозоля клеток. Ацетилированные метаболиты плохо растворяются в воде и медленно элиминируются. Метилирование - перенос метила с S-аденозилметионина на лекарственное средство при участии метилтрансферазы. Это единственная реакция конъюгации, протекающая без образования полярных метаболитов. Недавно было установлено, что в реакциях конъюгации могут образовываться токсические метаболиты: N-сульфоэфиры, N-ацетоксиариламины. Они алкилируют ДНК и вызывают мутагенез и канцерогенез. Примеры реакций биотрансформации ксенобиотиков приведены в табл. 3-4.
Таблица 3-4. Реакции биотрансформации ксенобиотиков Окончание табл. 3-4 |
Последнее изменение этой страницы: 2017-04-12; Просмотров: 640; Нарушение авторского права страницы