Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Предмет биологическая химия и соотношение её с другими науками.



Биохимия является частью биологии – науки о жизни. Она изучает состав живых организмов, судьбу веществ, которые поступают в живой организм, дают ему энергию, разрушаются и выводятся из организма.

Биохимию условно делят на три большие области: статистическую, динамическую и функциональную. Основными ее задачами являются: 1) изучение химического состава и строения биологически активных соединений (БАС), составляющих основу органов и тканей животного; 2) изучение сложных процессов и химических превращений их веществ; 3) изучение многочисленных схем превращений веществ на молекулярно-клеточном уровне для конкретных органов и тканей. Биохимия имеет тесные связи с неорганической и органической химией, морфологией, физиологией, микробиологией и др. науками.

Из истории. Сведения о биохимии были известны в глубокой древности. Биотехнические технологии использовались при приготовлении различных напитков и консервированных продуктов. Алхимики внесли большой вклад в развитие биохимии. Учёные средневековья считали, что органические вещества могут синтезироваться только в живых организмах под действием особой жизненной силы. Этих ученых называли виталистами (от лат.Vito – жизнь). Известный биолог Луи Пастер был виталистом. Открытиями химиков-органиков в конце ХVIII начале ХIХ веков удалось синтезировать органические вещества в пробирке. Ключевым шагом в становлении биохимии ученые считают получение щавелевой кислоты и мочевины в 1828 г. немецким ученым Ф. Велером. Также немецкие ученые Ю. Либих и Й. Берцелиус показали, что в состав живых организмов входит углерод. Их исследования показали, что синтез органических веществ может протекать в живых организмах, то есть без присутствия жизненной силы. Поэтому теория виталистов осталась не признанной.

Интенсивное развитие биохимии следует отнести к концу ХIХ и началу ХХ века. В этот период были открыты и изучены белки, а именно русский ученый А.Я. Данилевский дал представление о первичной структуре белка. Х. Кребс подробно изучил цикл трикарбоновых кислот. Французский ученый К. Бернар выделил из тканей печени гликоген и доказал, что он является источником энергии в организме. Ученый Д. Самер из бобов получил фермент уреазу. Исследования ученых ХХ века были посвящены изучению генетических основ, были изучены различные виды обмена веществ в организме человека и животных. Разработаны различные биотехнологии, в основе которых лежат биохимические процессы. Современная биохимия является передовой наукой способствующей быстрому развитию прогресса в обществе. С её помощью достигла больших успехов генная инженерия, фармакология, биотехнологии в других областях науки.

Определение и биологическая роль белков в жизненных явлениях

Термин «протеин» ввел голландский ученый Г. Мульдер и обозначил его «Рr», По его мнению белок имел следующую формулу С40 Н62 N10 О12. Белок сыворотки крови – 10РrS2Р. Открытие белков привело к тому, что их стали считать важнейшими органическими соединениями, с которыми связана жизнь. Развитие биологической науки полностью подтвердило особое значение белков для живых организмов. Они выполняют важнейшие функции в живых организмах. С ними связан иммунитет, биологический катализ, сократимость мышечных волокон и ряд других неизменно важных функций.

 

Лекция 2. Биохимия белков.

Строение белковой молекулы

Молекулярная масса белков колеблется в пределах от 1000 до нескольких миллионов атомных единиц. Опыты показали, что в состав белков входят 20 органических соединений получивших название – аминокислоты. Всего насчитывается больше 100 аминокислот, но в состав растительных и живых организмов входят только 20. В составе микробов, вирусов могут находиться другие аминокислоты, но человеком и животными эти аминокислоты не усваиваются. В состав аминокислоты входит обязательно аминогруппа и карбоксильная группа.

 

СН3

 


НС – NH2 - аланин

 


СООН

 

Самая простая кислота Н3С – NH2

 

СООН - глицин

 

Аминокислоты обладают оптической активностью, то есть, способностью отклонять плоскость поляризованного луча влево или вправо. Поэтому признаку их делят на L и D аминокислоты. В состав растительных и живых организмов входят только L-аминокислоты. D-аминокислоты или правовращающиеся встречаются у микробов, грибов и некоторых других соединений. Организмом человека и животных эти аминокислоты не усваиваются.

Аминокислоты по своему строению могут иметь различное количество функциональных групп. Так существуют аминокислоты, имеющие в своем составе две аминогруппы и одну карбоксильную группу. Например, лизин. Существуют аминокислоты, состоящие из 1-ой амино и 2-х карбоксильных групп. Их называют моноаминодикарбоновые. Например, аспарагиновая кислота. Имеются ещё циклические аминокислоты, в основе которых лежит бензольное или гетероциклическое кольцо.

По современным представлениям белковая молекула имеет сложную пространственную структуру. Поэтому у белковой молекулы принято выделять в строении четыре уровня.

1. Первичная структура белковой молекулы. Определяется последовательность расположения аминокислот в молекуле белка, то есть за аланином – глицин – лизин.

2. Вторичная структура белковой молекулы. Представляет собой нить белковой молекулы, закрученную в спираль.

3. Третичная структура белковой молекулы представляет собой белковую спираль свернутую в клубок, имеющую трёхмерное строение. Отдельные участки белковой молекулы связаны между собой с помощью ковалентных, водородных связей и электроосмотических сил.

4. Четвертичная структура белковой молекулы. Она возникает тогда, когда несколько молекул белка объединяются между собой, образуя одну молекулу. Многие биокатализаторы-ферменты имеют четвертичную структуру.

Белки обладают определенными физико-химическими свойствами

Химические свойства белков связаны с наличием на поверхности белковой молекулы таких реакционных групп, как аминогруппа (NH2), карбоксильная группа (СООН), сульфгидрильная (SH). Белковая молекула имеет электрический заряд зависящий от состояния амино- и карбоксильной групп и от рН среды. Значение рН раствора белка, при котором белок становится электронейтральным, называется – изоэлектрической точкой данного белка. Каждый белок имеет свое значение рН, при котором он находится в изоэлектрическом состоянии. В этом состоянии вязкость белков наименьшая. Белки чувствительны к температуре, при 400С происходит изменение структуры белковой молекулы. Этот процесс получил название – денатурация. При нагревании белковой молекулы свыше 700С белок теряет свои прижизненные свойства и может выпадать в осадок.

Классификация белков

В современной классификации белки делят на протеины (простые белки) и протеиды (сложные белки). Простые белки состоят только из аминокислот, сложные белки состоят из небелковой части, которая может быть представлена углеводом, липидом, нуклеиновой кислотой, металлом и др. соединениями.

Простые белки.

Простые белки делятся на: альбумины и глобулины, которые занимают значительный процент в составе простых белков. Альбумины встречаются у растений и у животных. Молекулярная масса альбуминов находится в пределах от 1000 до 10000 атомных единиц. Они хорошо растворимы в воде.

Состав аминокислот альбуминов включает заменимые, незаменимые и частично заменимые аминокислоты. Заменимые аминокислоты синтезируются в организме, незаменимые – не синтезируются. Незаменимых аминокислот 8: валин, лейцин, изолейцин, метионин, трионин, лизин, триптофан, фенилаланин. Заменимых аминокислот тоже 8: аланин, аспарагин, глутамин, глицин пролин, серин, аспарагиновая кислота, глутаминовая кислота. Частично заменимых аминокислот 4: аргинин, гистидин, цистеин, тирозин. Белки, включающие в свой состав все заменимые, незаменимые и частично заменимые аминокислоты – называются полноценными белками. Полноценные белки имеют животное происхождение (молоко, яйцо, рыба и т.д.). Белки, которые содержат в своем составе часть незаменимых аминокислот, или неполное их количество – называются неполноценными белками. Это белки растительного происхождения. Большое количество альбуминов находится в крови животных. Количество их является величиной постоянной.

В организме животного находится большое количество простых белков глобулинов. Молекулярная масса глобулинов находится в пределах от 10 тыс. до 1, 5 млн. атомных единиц.

С помощью физико-химических методов глобулины можно разделить на несколько фракций (а1, а2, ß , γ ). К числу а1 глобулинов относятся гликопротеины, которые связывают до 60% глюкозы плазмы крови. а2 глобулин содержит с своем составе медьсодержащий белок – церулоплазмин и тиреоглобулин, который переносит тироксин (гормон щитовидной железы). ß глобулин транспортирует фосфолипиды, холестерин, стероидные гормоны и ряд катионов. Они связывают до 70% липидов плазмы крови. Кроме того, в его составе находится белок, который связывает железо плазмы крови – трансферин. В составе γ глобулиновой фракции содержится белок – фибриноген и антитела. Фибриноген участвует в свертывании крови, а антитела выполняют защитную функцию. Определение этих фракций имеет важное значение в клинической практике.

Альбумины создают осмотическое давление крови, регулирует равновесие воды и электролитов между плазмой и тканями, и сохраняют необходимый объем крови для нормальной циркуляции. Они удерживают воду в кровяном русле.Альбумины переносят растворимые промежуточные продукты обмена (мочевина, мочевая кислота, пуриновые основания, креатин, молочная, пировиноградная кислоты и др. соединения) от одной ткани к другой. Они активно участвует в переносе свободных жирных кислот из печени в периферические ткани, обеспечивают транспорт билирубина в печень.

Глобулины плазмы крови – это множество различных белков. Они транспортируют липиды, гормоны, жирорастворимые витамины, жирные кислоты, соли желчных кислот, желчные пигменты, йод, цинк, медь, железо.

Альбумины и глобулины находятся в определенном соотношении. Это соотношение называется белковым коэффициентом. Альбумины и фибриноген синтезируются в печени, а глобулины – в лимфатических узлах, селезенке, костном мозге.


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 547; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.019 с.)
Главная | Случайная страница | Обратная связь