Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Термический цикл сварки и структура сварного соединения



Присварке плавлением в результате нагрева в околошовной зоне протекают следующие процессы: фазовая перекристаллизация; рост зерен; гомогенизация высокотемпературной фазы и ее превращение при охлаждении

Фазовая перекристаллизация – это переход перлита и феррита в аустенит.

Гомогенизацией называется процесс создания однородной структуры в сплавах в результате ликвидации концентрационных микронеоднородностей образующиеся в сплавах при кристаллизации.

Сварные шва имеют целый комплекс структур наплавленного металла и металла, который в процессе сварки подвергается нагреву. Рассмотрим различные участки структуры сварного шва.

Участок наплавленного металла (шва) имеет столбчатое строение. Столбчатые кристаллы от переходной зоны между участком неполного расплавления и наплавленным металлом направлены в глубь шва.

Кристаллит состоит из отдельных дендритов, имеющих общую направленность.

На участке неполного расплавления первичная структура характеризуется химической неоднородностью, вторичная структура имеет структуру. Эта зона не велика и составляет от 0, 1 до 0, 5мм.

На участке перегрева может образоваться крупнозернистая структура, которая придает металлу наименьшую пластичность и ударную вязкость. Ширина зоны участка 3÷ 4мм.

Участок нормализации – характеризуется мелкозернистым строением металла. Ширина участка от 0, 2 до 4÷ 5мм.

На участке не полной перекристаллизации не все зерна основного металла подвергаются перекристаллизации. Ширина этой зоны от 0, 1 до 5мм.

Рекристализационный участок появляется при сварке пластических деформированных сталей ширина участка от 0, 1 до1, 5мм.

Участок синеломкости расположен за участком рекристаллизации, структура металла здесь не отличается от исходной структуры, на этом участке температура нагрева достигает 200÷ 400°С.

Термическая обработка сварных соединений и швов

Отжигомназывается процесс термической обработки, при котором деталь нагревается до заданной температуры, выдерживается, а затем медленно охлаждается вместе с печью. Различают два вида отжига:

Отжиг I рода, не связанный с фазовой перекристаллизацией;

Отжиг II рода, основанный на фазовой перекристаллизации.

Отжиг I рода.Применяют отжиги: рекристаллизационный, диффузионный и для снятия напряжения.

Рекристаллизационный отжигслужит для устранения наклепа, на-гартовки после пластической деформации и осуществляется для углеродистой стали при температуре 680÷ 700°С, а для легированных – при 700-730 °С. Время выдержки зависит от размеров изделия.

Диффузионному отжигув основном подвергаются легированные стали. Температура отжига 1000÷ 1200°С, выдержка 8÷ 10ч. Охлаждение до температуры 550÷ 600°С медленное, затем с любой скоростью. Диффузионный отжиг служит для устранения ликвации.

Отжиг для снятия напряженияпроводится при температуре 400÷ 650°С, время выдержки – из расчета 2, 5мин на 1мм толщины сечения детали.

Отжиг II рода.Применяют для полной перекристаллизации металла шва и околошовной зоны сварной конструкции. В зависимости от состава сталей температура отжига колеблется в диапазоне от 760 до 1050 °С.

Нормализацияявляется разновидностью полного отжига и существенно сокращает время термообработки, так как детали охлаждаются на воздухе. При нормализации стали нагреваются до температуры 950÷ 1000°С. Для низкоуглеродистых сталей вместо отжига рекомендуется нормализация, поскольку у них практически не различаются свойства после отжига и нормализации.

Закалка– обработка, при которой сталь нагревается до температуры 750÷ 1000°С, выдерживается при ней, а затем резко охлаждается. В ка­честве закалочной среды используют воду, минеральные масла, водный 10%-й раствор NaOH, расплавленные соли, щелочи и др.

После закалки выполняют отпуск, при котором закаленная сталь на­гревается до температуры ниже интервала превращений, выдерживается и охлаждается. Существуют три вида отпуска. Низкий отпуск (нагрев и выдержка при температуре 150÷ 250°С) применяется для закаленных и химикотермически обработанных сталей, от которых требуется высокая твердость (58÷ 63HRC) и износостойкость. Конечная структура – отпущенный мартенсит. Средний отпуск (350÷ 450°С) дает твердость 40÷ 50HRC с высокой упругостью и достаточной прочностью. Применяется для пружин, рессор и штампов. Высокий отпуск (500÷ 680°С) дает твердость 30÷ 40HRC, резко повышается ударная вязкость, поэтому обработку закалка + высокий отпуск называют улучшением. Высокому отпуску подвергают среднеуглеродистые стали, предназначенные для изготовления деталей машин, испытывающих в процессе эксплуатации ударные нагрузки.

Одним из эффективных способов поверхностного упрочнения является химико-термическая обработка, которая представляет собой процесс поверхностного насыщения стали химическими элементами.

К наиболее распространенным методам этого вида обработки относится цементация, азотирование, цианирование и др.

Цементация – процесс насыщения поверхностных слоев сталей, содержащих от менее 0, 3 до 0, 8÷ 1, 0% С. Глубина насыщения – 0, 8÷ 2, 0мм, температура цементации 910÷ 950°С, время выдержки – 8÷ 16ч. После цементации стали подвергают закалке и низкому отпуску. Цементируют детали с высокой контактной прочностью: кулачки, зубчатые колеса, пальцы, распределительные валки и др.

Азотирование – процесс насыщения поверхностного слоя изделий азотом, который применяется для среднеуглеродистых сталей, легирующие элементы которых имеют большое сродство к азоту (молибден, хром, алюминий). Цель азотирования - повышение коррозионной стойкости твердости и износостойкости. Азотирование проводится в печах в среде аммиака при температуре 500÷ 550°С в течение 24÷ 60ч. Толщина азотированного слоя – 0, 1÷ 0, 6мм. Азотируют детали, для которых требуется высокая коррозионная стойкость, высокое сопротивление износу в условиях знакопеременных нагрузок, сохранение поверхностной твердости до 500÷ 600°С.

Цианирование – процесс одновременного насыщения поверхности стали углеродом и азотом. Оно делится на высокотемпературное (900-950°С в среде природного газа и аммиака 5÷ 7%) и низкотемпературное (540÷ 560°С в среде природного газа и аммиака 20÷ 30%). Газовое цианирование называют нитроцементацией. Жидкостное цианирование осуществляется в расплаве цианистых соединений при температуре 550÷ 570°С. Цианирование обеспечивает высокую поверхностную твердость, износостойкость, уменьшение коробления в процессе химико-термической обработки.

В табл. 3 приведены основные показатели, позволяющие определить ориентировочный химический состав стали по искрам, которые образуются при ее обработке абразивным инструментом.

 

Таблица 3. Определение марки стали по искрам.

Сталь Цвет и характеристика пучка искр
Низкоуглеродистая нелеги­рованная (до 0, 15 % С) Короткий темно-желтый пучок искр, прини­мающий форму полосок и становящийся более светлым в зоне сгорания. Мало звездообраз­ных разветвлений
Среднеуглеродистая нелеги­рованная (0, 15÷ 1, 0% С) При повышении содержания углерода образует­ся более светлый желтый пучок искр. Много­численные звездочки и ответвления лучей
Высокоуглеродистая нелегированная (> 1, 0%С) Очень плотный пучок искр с многочисленными звездочками. При повышении содержания угле­рода уменьшается яркость и укорачивается пу­чок искр
Низколегированная с повы­шенным содержанием мар­ганца Широкий, ярко-желтый пучок искр; внешняя зона линий искр особенно яркая. Многочислен­ные разветвления лучей
Марганцовистая (12% Мn) Преобладание зонтообразных искр
Конструкционная (до 5% Ni) Ярко-желтые линии искр в виде язычков, рас­щепленные на конце; увеличение яркости в зоне сгорания. При повышении содержания углерода на концах искр появляются звездочки
Высоколегированная с по­вышенным содержанием никелевая При содержании 35% Ni красно-желтое окра­шивание пучка. При более высоком содержа­нии никеля (около 47%) яркость искр значи­тельно ослабевает
Хромоникелевая Хромистая с низким содер­жанием углерода и высо­ким содержанием хрома Короткий темно-красный пучок искр без звез­дочек, слаборазветвленный; искры прилипают к поверхности шлифовального круга
Вольфрамсодержащая Красные короткие искры: линии искр отчетли­во изгибаются книзу. Разветвление звездочек углерода отсутствует. Чем выше содержание вольфрама, тем слабее образование искр
Молибденсодержащая Ярко-желтые искры в виде язычков. При низ­ком содержании кремния язычки видны перед звездочками углерода, при повышенном содер­жании — за звездочками углерода
       

 

Определения механических свойств металла.

Прочность – сопротивление металла деформации и разрушению.

Упругость – способность материала восстанавливать свою форму и объем после прекращения действия внешних сил.

Пластичность – способность материала под действием внешних сил изменять, не разрушаясь, свою форму и размеры и сохранять остаточные деформации после устранения этих сил.

Твердость – сопротивление материала местной пластической дефор­мации, возникающей при внедрении в нее более твердого тела.

Ударная вязкость – способность материала сопротивляться действию ударных нагрузок.

Истираемость – склонность материала изнашиваться под влиянием сил трения.

Износ – изменение размеров, формы, массы и состояния поверхности изделия вследствие разрушения (изнашивания) поверхностного слоя изделия при трении.

Механические свойства определяются по результатам механических испытаний. Прочность, упругость и пластичность определяются при испытании металлов на растяжение.

Твердость определяют при проникновении в испытуемый металл более твердого материала.

Ударную вязкость определяют при испытании металла на разрушение с помощью удара.

Таблица 4. Основные показатели механических свойств металла при испытаниях


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 717; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь