Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Прямая и обратная задачи математического моделирования



Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача: структура модели и все её параметры считаются известными, главная задача — провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера, — вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей, конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул. [21]

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача: известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

Модель Мальтуса

Скорость роста пропорциональна текущему размеру популяции. Она описывается дифференциальным уравнением

где α — некоторый параметр, определяемый разностью между рождаемостью и смертностью. Решением этого уравнения является экспоненциальная функция x(t) = x0eα t. Если рождаемость превосходит смертность (α > 0), размер популяции неограниченно и очень быстро возрастает. Понятно, что в действительности этого не может происходить из-за ограниченности ресурсов. При достижении некоторого критического объёма популяции модель перестает быть адекватной, поскольку не учитывает ограниченность ресурсов. Уточнением модели Мальтуса может служить логистическая модель, которая описывается дифференциальным уравнением Ферхюльста

где xs — «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению xs, причем такое поведение структурно устойчиво.

Система хищник-жертва

Допустим, что на некоторой территории обитают два вида животных: кролики (питающиеся растениями) и лисы (питающиеся кроликами). Пусть число кроликов x, число лис y. Используя модель Мальтуса с необходимыми поправками, учитывающими поедание кроликов лисами, приходим к следующей системе, носящей имя модели Вольтерра — Лотки:

Эта система имеет равновесное состояние, когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора. Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым: малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения. Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать. Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра — Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

1. «Теория считается линейной или нелинейной в зависимости от того, какой — линейный или нелинейный — математический аппарат, какие — линейные или нелинейные — математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А., Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. — M.: URSS, 2006. — 208 с. ISBN 5-484-00183-8

2. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем — это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С., Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.

3. 123 «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А., Моделирование систем: Учеб. для вузов — 3-е изд., перераб. и доп. — М.: Высш. шк., 2001. — 343 с. ISBN 5-06-003860-2

4. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует — например, как он реагирует на внешние воздействия, — то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д., Элементы теории математических моделей. — 3-е изд., испр. — М.: КомКнига, 2007. — 192 с ISBN 978-5-484-00953-4

5. «Очевидный, но важнейший начальный этап построения или выбора математической модели — это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д., Элементы теории математических моделей. — 3-е изд., испр. — М.: КомКнига, 2007. — 192 с ISBN 978-5-484-00953-4, с. 35.

6. « Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А., Моделирование систем: Учеб. для вузов — 3-е изд., перераб. и доп. — М.: Высш. шк., 2001. — 343 с. ISBN 5-06-003860-2, с. 93.

7. «Конструирование модели начинается со словесно-смыслового описания объекта или явления. … Данный этап можно назвать формулировкой предмодели.» Самарский А. А., Михайлов А. П., Математическое моделирование. Идеи. Методы. Примеры, — М.: Физматлит, 2001, 320 c. ISBN 5-9221-0120-X. c. 25.

Литература

1. Безручко Б. П., Смирнов Д. А. Математическое моделирование и хаотические временные ряды. — Саратов: ГосУНЦ " Колледж", 2005. — ISBN 5-94409-045-6

2. Блехман И. И., Мышкис А. Д., Пановко Н. Г., Прикладная математика: Предмет, логика, особенности подходов. С примерами из механики: Учебное пособие. — 3-е изд., испр. и доп. — М.: УРСС, 2006. — 376 с. ISBN 5-484-00163-3

3. Введение в математическое моделирование. Учебное пособие. Под ред. П. В. Трусова. — М.: Логос, 2004. — ISBN 5-94010-272-7

4. Горбань А. Н., Хлебопрос Р. Г., Демон Дарвина: Идея оптимальности и естественный отбор. — М: Наука. Гл ред. физ.-мат. лит., 1988. — 208 с — (Проблемы науки и технического прогресса) — ISBN 5-02-013901-7 (Глава «Изготовление моделей»).

5. Журнал Математическое моделирование (основан в 1989 году)

6. Малков С. Ю., 2004. Математическое моделирование исторической динамики: подходы и модели // Моделирование социально-политической и экономической динамики / Ред. М. Г. Дмитриев. — М.: РГСУ. — с. 76-188.

7. Мышкис А. Д., Элементы теории математических моделей. — 3-е изд., испр. — М.: КомКнига, 2007. — 192 с ISBN 978-5-484-00953-4

8. Самарский А. А., Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры.. — 2-е изд., испр.. — М.: Физматлит, 2001. — ISBN 5-9221-0120-X

9. Советов Б. Я., Яковлев С. А., Моделирование систем: Учеб. для вузов — 3-е изд., перераб. и доп. — М.: Высш. шк., 2001. — 343 с. ISBN 5-06-003860-2

Нелинейная система — динамическая система, в которой протекают процессы, описываемые нелинейными дифференциальными уравнениями. Свойства и характеристики нелинейных систем зависят от их состояния.

В отличии от линейной системы не обладает свойствами суперпозиции, частота выходного сигнала зависит от его амплитуды и др.

Многие нелинейные системы в области малых изменений параметров поддаются линеаризации.

Теория линейных стационарных систем — раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Широко используется в процессе управления техническими системами, цифровой обработке сигналов и других областях инженерного дела.

// Обзор

Определяющими свойствами для любой линейной стационарной системы являются линейность и стационарность:

· Линейность означает, что связь между входом и выходом системы удовлетворяет свойству. Формально, линейной называется система, обладающая следующим свойством: если сигнал на входе системы -

тогда сигнал на выходе системы -

для любых постоянных A и B, где yi(t) — выход системы как реакция на входной сигнал xi(t).

· Стационарность — означает, что выходной сигнал системы как реакция на любой заданный входной сигнал одинаков для любого момента приложения входного сигнала (с точностью до времени запаздывания момента приложения входного сигнала). В более узком смысле — при запаздывании входного сигнала по времени на некоторую величину, выходной сигнал будет запаздывать на ту же самую величину.

Динамика систем, обладающих вышеперечисленными свойствами, может описываться одной простой функцией, к примеру, импульсной переходной функцией. Выход системы может рассчитываться как свёртка входного сигнала с импульсной переходной функцией системы. Этот метод анализа иногда называется анализом во временной области. Сказанное справедливо и для дискретных систем.

 

Связь между временной областью и частотной областью

Кроме того, любая ЛСС может быть описана в частотной области с помощью своей передаточной функции, которая является преобразование Лапласа импульсной передаточной функции (или Z-преобразованием в случае дискретных систем). В силу свойств этих преобразований, выход системы в частотной области будет равен произведению передаточной функции и соответсвующего преобразования входного сигнала. Другими словами, свёртке во временной области соответсвует умножение в частотной области.

Для всех ЛСС собственные функции являются комлексными экспонентами. То есть, если вход системы представляет собой комплексный сигнал Aexp(st) с некоторой комплексной амплитудой A и частотой s, то выход будет равен некоторому сигналу Bexp(st) с комплексной амплитудой B. Отношение B / A будет являться передаточной функцией системы на частоте s.

Так как синусоиды представляют собой сумму компелксных экспонент с комплексно-сопряжёнными частотами, если вход системы — синусоида, то выходом системы будет также синусоида, в общем случае с другой амплитудой и фазой, но с той же частотой.

Теория ЛСС хорошо подходит для описания многих систем. Большинство ЛСС гораздо проще анализировать, чем нестационарные и нелинейные системы. Любая система, динамика которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является линейной стационарной системой. Примерами таких систем являются электрические схемы, собранные из резисторов, конденсаторов и катушек индуктивности (RLC-цепочки). Груз на пружинке также можно считать ЛСС.

Большая часть общих концепций ЛСС схожа как в случае непрерывных систем, так и в случае дискретных систем.

Стационарность и линейные преобразования

Рассмотрим нестационарную систему, чья импульсная характеристика представляет собой функцию двух переменных. Посмотрим, как свойство стационарности поможет нам избавиться от одного измерения. К примеру, пусть входной сигнал — x(t), где аргумент — числа действительной оси, то есть . Линейный оператор показывает, как система отрабатывает этот входной сигнал. Соответствующий оператор для некоторого набора аргументов представляет собой функцию двух переменных:

Для дискретной системы:

Так как — линейный оператор, воздействие системы на входной сигнал x(t) представляется линейным преобразованием, описываемым следующим интегралом (интеграл суперпозиции)

Если линейный оператор ко всему прочему является и стационарным, тогда

Положив

получим:

Для краткости записи второй аргумент в h(t1, t2) обычно опускается и интеграл суперпозиции становится интегралом свёртки:

Таким образом, интеграл свёртки показывает как линейная стационарная система отрабатывает любой входной сигнал. Полученное соотношение для дискретных систем:


Поделиться:



Последнее изменение этой страницы: 2017-04-12; Просмотров: 2715; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.028 с.)
Главная | Случайная страница | Обратная связь