Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология Образование Политология Производство Психология Стандартизация Технологии |
Инструментальные стали: X, 9ХС, ХВГ, ХВ5. ⇐ ПредыдущаяСтр 10 из 10
Высоколегированные инструментальные стали содержат вольфрам ( до 18%), хром и ванадий и имеют высокую теплостойкость (600—640°С). Их используют для изготовления высокопроизводительного режущего инструмента, предназначенного для обработки высокопрочных сталей и других труднообрабатываемых материалов. Такие стали называют инструментальными быстрорежущими (ГОСТ 19265—73). Быстрорежущие стали обозначают буквой Р, цифра после которой указывает содержание вольфрама. Содержание хрома (4%) и ванадия (2%) в марках быстрорежущих сталей не указывают. В некоторые быстрорежущие стали дополнительно вводят молибден, кобальт и большое количество ванадия. Марки таких сталей содержат соответственно буквы М, К, Ф и цифры, указывающие их количество. Наиболее распространены: Р9, Р18, Р10К5Ф5, Р6М5, 11РЗАМЗФ2, Р6М5ФЗ, Р12ФЗ, Р18К5Ф2, Р9К5, Р6М5К5, Р9М4К8, Р2АМ9К5 и т.д. Сплавы твердые спеченные — материалы из высокотвердых и тугоплавких карбидов (вольфрама, титана, тантала), сцементированных металлической связкой (кобальтом). Твердые сплавы изготавливают методом порошковой металлургии путем прессования смеси порошков карбидов и кобальта в изделия необходимой формы и последующего спекания при 1250—1450°С в атмосфере водорода или в вакууме. Твердые сплавы значительно превосходят быстрорежущую сталь по твердости, износостойкости и красностойкости (800—1000°С), уступая ей по прочности и вязкости. Основная масса твердых сплавов применяется при обработке резанием металлических и неметаллических (пластмассы, стекла, резины и др.) материалов в виде пластин стандартной формы и размеров для оснащения рабочей части инструментов (резцов, фрез, сверл и др.) путем механического крепления или напайки. Кроме стандартных пластин, промышленность твердых сплавов выпускает монолитный (цельный) инструмент (сверла, фрезы и др.). Замена быстрорежущей cтали твердыми сплавами при обработке резанием черных металлов (особенно труднообрабатываемых сталей и сплавов) позволяет повысить в 1, 5—2 раза и более скорость резания и в несколько раз увеличить стойкость инструмента. Особенно большой эффект получается при применении для обработки резанием многогранных неперетачиваемых пластин из твердых сплавов, на которые наносятся однослойные или многослойные износостойкие покрытия. Крупными областями потребления твердых сплавов являются также горные и буровые работы. Буровой твердосплавный инструмент служит в несколько раз дольше, чем стальной. Спеченные твердые сплавы применяются также при бесстружковой обработке металлов (инструменты для волочения проволоки, прутков, труб; для холодной высадки метизов и штамповки различных изделий из листа или ленты), для изготовления износостойких деталей машин, приборов и приспособлений. Сплавы спеченные твердые по ГОСТ 3882—84 делятся на три группы:
Вольфрамовые твердые сплавы. Структура вольфра\мовых сплавов представляет собой частицы карбида вольфрама WC, связанные кобальтом. Чем меньше в сплавах кобальта и мельче карбидные частицы, тем выше твердость, износостойкость сплава, но ниже прочность и вязкость. Вольфрамовые сплавы применяются для обработки резанием чугуна, цветных металлов, неметаллических материалов (пластмассы, стекла, резины, фибры и др.). труднообрабатываемых (нержавеющих, высокопрочных и жаропрочных) сталей и сплавов; для оснащения горного инструмента; для бесстружковой обработки металлов (волочение, штамповка); для изготовления быстроизнашивающихся деталей машин, приборов и приспособлений. Марки твердых спеченных сплавов: ВК4, ВК6, ВК6-ОМ, ВК10-М, ВК15, ВК20, Т30К4, Т15К6, Т14К8, Т5К10, Т5К12, ТТ7К12, ТТ8К6, ТТ10К8-Б, ТТ20К9 и т.д. Титано-вольфрамовые твердые сплавы. Эти сплавы обладают большей твердостью, износостойкостью и красностойкостью (900—1000 °С), чем вольфрамовые сплавы. Они имеют также меньший коэффициент трения и меньшую склонность к свариванию (слипанию) со стальной стружкой, чем вольфрамовые сплавы. Поэтому титано-вольфрамовые сплавы применяются для обработки резанием сталей, дающих непрерывную (сливную) стружку. Твердость, износостойкость и красностойкость титано-вольфрамовых твердых сплавов возрастает с повышением содержания карбидов титана, но при этом одновременно снижается их механическая прочность и вязкость. Титано-тантало-вольфрамовые сплавы. От титано-вольфрамовых сплавов сплавы данной группы отличаются большей прочностью и лучшей сопротивляемостью вибрациям и выкрашиванию. Они применяются для наиболее тяжелых условий резания (тяжелой черновой обработки стальных поковок и отливок), черновой и получистовой обработки труднообрабатываемых сталей и сплавов и др. Рис. 4.4 Титановые кольца Повышение качества твердых сплавов, перспективы применения новых инструментальных материалов. Твердые сплавы хотя и являются высокопроизводительными инструментальными материалами, однако имеют существенный недостаток: они содержат большое количество дорогостоящих дефицитных металлов, к числу которых в первую очередь относится вольфрам. Острый дефицит вольфрама привел к необходимости создания безвольфрамовых твердых сплавов, которые по своим физико-механическим свойствам стали полноценными заменителями традиционных твердых сплавов. Сплавы твердые спеченные безвольфрамовые (ГОСТ 26530—85) распространяется на безвольфрамовые твердые сплавы, предназначенные для оснащения режущего инструмента и для изготовления износостойких деталей. Изделия из безвольфрамовых сплавов делают методом порошковой металлургии. Создание безвольфрамовых твердых сплавов вызвано к жизни в первую очередь экономией остродефицитного вольфрама. Сплавы марок ТН20 и КНТ16 по своим основным свойствам не уступают традиционным вольфрамовым сплавам и успешно применяются взамен вольфрамовых и титано-вольфрамовых сплавов. Безвольфрамовые сплавы отличаются пониженной адгезионной способностью по отношению к обрабатываемому материалу и почти в 2 раза меньшей плотностью, чем сплавы, содержащие вольфрам. Основу сплава ТН20 составляет карбид титана, а сплава КНТ16 — карбонитрид титана. Связующим материалом в обеих марках служат никель и молибден. Безвольфрамовые сплавы успешно применяются также для сопел распылителей, вытяжных матриц, клапанов буровых насосов, колец и втулок плунжеров, деталей измерительной аппаратуры, деталей для микросварки, прессоснастки при изготовлении изделий из резины, оснащения мерительного инструмента (калибров, концевых мер длины и др.).
Порошковая металлургия Студент должен Знать:
Иметь представление:
Методы получения порошков. Методами порошковой металлургии можно получать сплавы из металлов, не растворяющихся друг в друге при расплавлении, а также сплавы из тугоплавких металлов и металлов особо высокой чистоты. Порошковой металлургией изготовляют как заготовки, так и разнообразные детали точных размеров и получать пористые материалы и детали из них, а также детали, состоящие из двух (биметаллы) или нескольких слоев различных металлов и сплавов. Методы порошковой металлургии позволяют получить материалы и детали, обладающие высокой жаростойкостью, износостойкостью, твердостью, с заданными стабильными магнитными свойствами, особыми физико-химическими, механическими и технологическими свойствами, которые невозможно получить методами литья или обработкой давлением. Процесс производства деталей и изделий из порошковых материалов заключается в приготовлении металлического порошка, составлении шихты. прессовании и спекании заготовок. Металлические порошки получают механическими и физико-химическими методами. При механических методах порошки вырабатывают измельчением твердых или распылением жидких металлов (олова, свинца, алюминия, меди) без изменения их химического состава. При получении порошков физико-химическими методами происходят изменения химического состава и свойств исходного материала. Основными физико-химическими методами являются химическое восстановление металлов из окислов, электролиз расплавленных солей, карбонильный метод и метод гидрогенизации. Текучесть – способность порошка заполнять форму. Прессуемость – способность порошка уплотняться под действием внешней нагрузки и характеризуется прочностью сцепления частиц порошка после прессования. Спекаемость – это прочность сцепления частиц, возникающих в результате термической обработки прессованных заготовок. С помощью порошковой металлургии получают твердые сплавы и металлокерамику. Марки твердых сплавов:
|
Последнее изменение этой страницы: 2017-05-05; Просмотров: 81; Нарушение авторского права страницы