Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Управление герконом с помощью ферромагнитного экрана



 

Управлять состоянием геркона можно с помощью не только магнитного поля, создаваемого катушкой управления, но и поля постоянного магнита. Такой способ широко используется в современных слаботочных аппаратах управления (тумблеры, переключатели, кнопки, командоаппараты) и КИП (сигнализаторы положения, конечные выключатели, датчики). Состояние геркона изменяется при приближении или удалении от него постоянного магнита.

Рис. 4.2.11. Управление герконом с помощью ферромагнитного экрана: а - геркон 1 срабатывает при удалении экрана 4 и магнита 2; б - геркон 1 срабатывает при приближении к магнитам 2 и 3 экрана 4; в - геркон 1 срабатывает при удалении экрана 4 из зазора между герконом и постоянным

магнитом 2

 

Следует отметить, что при наличии постоянного магнита управление герконом может производится за счет ферромагнитного экрана (рис. 4.2.11).


 

ЛЕКЦИЯ № 14

 

4.2.7. ГР с магнитной памятью.

4.2.8. Конструкция гезаконов.

4.2.9. Силовые герконы.

4.2.10. Расчёт обмотки геркона.

4.2.11. Выбор, применение и эксплуатация герконов и герконовых реле.

ГР с магнитной памятью

 

Простейшее ГР с магнитной памятью показано на рис. 4.2.12, а. Два элемента магнитной памяти (ЭМП) 1 и 1' примыкают к КС геркона 3. При появлении управляющего импульса исогласном включении обмоток 2 и 2' создаваемый ими магнитный поток проходит через КС и оба ЭМП, которые намагничиваются. После прохождения импульса КС притягиваются за счет остаточной индукции ЭМП. Для отключения реле вобмотку 2 подается импульс тока, той же полярности и амплитуды, а в обмотку 2' - той же амплитуды и обратной полярности. За счет разности МДС обмоток происходит размагничивание ЭМП и уменьшение магнитного потока в зазоре между КС и они размыкаются. Для надежного управления длительность импульса тока срабатывания берется 100 -300 мкс.

 

Рис. 4.2.12. Герконовые реле с магнитной памятью

 

Для уменьшения минимально необходимого импульса МДС отпускания устанавливается магнитомягкий шунт 4 в зоне рабочего зазора геркона (рис. 4.2.12, б). При подаче разнополярных импульсов в обмотки 2 и 2' магнитный поток замыкается через КС, магнитный шунт 4 и ЭМП, минуя рабочий зазор геркона. После их соударения начинается вибрация контактов, которая длится 0, 5 - 2, 5 мс. Общее время сра­атывания геркона с памятью 1-3 мс. У герконов (рис. 4.2.12, б) оно меньше (1-2 мс).

Рис. 4.13. Многоцепевые ГР с магнитной памятью


 

ГР с магнитной памятью и переключающими контактами (рис. 4.2.13) имеет два ЭМП 1 и 1' и две обмотки управления 2 и 2'. При согласном включении обмоток и подаче на них импульсов одинаковой полярности магнитный поток, созданный ЭМП1 и 1', проходит через КС герконов З1 и 32 и они замыкаются. По КС герконов 33 и 34 магнитный поток не про­одит, т.к. в месте их расположения магнитные потоки от ЭМП 1 и 1' встречны. После прохождения управляющего импульса герконы З1 и 32 остаются замкнутыми, а 33 и 34 -разомкнутыми. При подаче на обмотку 21импульса того же знака, а на обмотку 22 а такого же импульса обратного знака происходит изменение направления намагничивания ЭМП 11. При этом магнитные потоки проходят через рабочие зоны герконов З1 и 32, которые размыкаются благодаря упругим свойствам КС.

В ГР на рис. 4.2.13, б возможны 16 комбинаций замкнутых и разомкнутых герконов в зависимости от того, какие обмотки включены. Например, если все обмотки включены так, что создаваемые ими потоки направлены от центра к периферии, то все герконы будут разомкнуты.

 

Конструкция гезаконов

 

Реле с магнитной памятью могут быть построены на базе специальных герконов, в которых ЭМП частично или полностью расположены внутри баллона. Такие герконы иногда называют гезаконами (герметичными запоминающими контактами). Возможные исполнения гезаконов показаны на рис. 4.2.14. Для исполнения по рис. 4.2.14, а КС 1 и 2 изготавливаются из реманентных материалов 35КХ12, 35КХ15, 40КНБ (сплавы кобальта и хрома) и выполняют функции ЭМП. Соединительные пластины 6 соединяют выводы геркона с КС 1 и 2. В исполнении по рис. 4.2.14, б из реманентного материала выполнен только КС2. На баллоны гезаконов устанавливаются 2 обмотки управления. При согласном включении обмоток КС намагничиваются и замыкаются. Для размыкания необходимо при последующем включении изменить полярность импульса в одной из обмоток, что приводит к размыканию КС.

Рис. 4.2.14. Конструкция гезаконов: 1, 2, 8 - КС; 3 - баллон; 4, 5 -выводы; б - соединительная пластина; 7 - постоянный магнит; 9, 10 - ЭМП

 

В случае рис. 4.14, в управление происходит от одного источника разнополярных импульсов. Через вывод 1 замыкается поток поляризующего постоянного магнита 7. При подаче управляющего импульса, создающего поле, согласное с полем постоянного магнита, эти поля складываются и КС замыкаются. При подаче встречного импульса КС размагничи­ваются и размыкаются.


 

Переключающий гезакон (рис. 4.2.14, в) имеет две обмотки управления. При согласном включении обмоток КС, 1 и 2 намагничиваются согласно, и КС 8 притягивается к КС 2. При изменении полярности импульса в одной из обмоток меняется направление намагниченности одного из КС и КС 8 притягивается к КС 1.

В гезаконе на рис. 4.2.14, г ЭМП выполнены в виде трубок 9, 10, надеваемых на КС 1 и 2. При согласном включении обмоток управления трубки ЭМП 9 и 10 намагничиваются согласно и КС замыкаются. Для отключения геркона в одной из обмоток надо поменять полярность импульса.

Силовые герконы

 

С целью увеличения коммутируемого тока и мощности в конструкцию герконов можно ввести дугогасительные контакты (рис. 4.2.15, а).

 

Рис. 4.2.15. Силовые герконы

 

В стеклянном корпусе 6 укреплены подвижные КС1 и неподвижные КС2. Пластина 5, выполняющая функцию дугогасительного контакта, упирается в КС 1, благодаря чему создается ее упругая деформация. При включении вначале замыкаются дугогасительные контакты 3 и 4. Затем замыкаются главные контакты. При отключении вначале размыкаются главные контакты 1 и 2, затем дугогасительные 3 и 4.

В другой конструкции силового геркона (рис. 4.2.15, б) функции главных контактов выполняются КС 1 и 2. Отверстие 7 в КС 2 приводит к быстрому насыщению материала. При этом магнитный поток из КС 2 переходит в перемычку 1, и КС 1 притягивается к КС 2. Сначала замыкаются дугогасительные контакты 3 и 4, затем главные 1 и 2.

В настоящее время серийно выпускаются т.н. герсиконы (герметичные силовые контакты). На основе герсикона КМГ-12 выпускаются контакторы. Герсиконы типа КМГ-12 выпускаются на Iн = 6, 3 А, включаемый ток до 180 А, отключаемый ток 63 А.

Расчёт обмотки геркона

 

1. Важнейшим параметром геркона, приводимым в его паспорте, является МДС срабатывания Fcp, по значению которой можно определить параметры обмотки. Расчетная МДС обмотки

FР = кг кп Fcp,

где kГ =1, 2-2 - коэффициент запаса, учитывающий технический разброс параметров геркона, допустимые колебания питающего напряжения и изменения сопротивления обмотки при нагреве; kn - коэффициент, учитывающий взаимное влияние совместно установленных герконов. По опытным данным kn= , где п - число герконов в реле.


 

2. Диаметр неизолированного провода dnp находится из формулы

d np/4 = q = F lcp/U,

где - удельное сопротивление материала провода обмотки в горячем состоянии; 1ср - средняя длина витка обмотки; U - напряжение источника.

находим по формуле

,

где -

 

Для медного провода =0, 0175-106 Ом-м при температуре =20 °С; кр - температура окружающей среды, °С; - допустимое превышение температуры обмотки, °С;

R = 0, 0041 1/°c; Средняя длина витка

/2= (dB+hk),

где dв = dб+2 ( + кар) - внутренний диаметр обмотки; dб - диаметр баллона геркона; -зазор между баллоном и каркасом; кар - толщина каркаса катушки управления; hк - радиальная толщина обмотки.

3. Для получения минимальной МДС срабатывания площадь сечения обмотки Q и ее радиальная толщина hк выбираются по соотношениям

Q=3d(L+ d)/8; hК = Q/ dB; lК = 4d(L+ d)/dB,

где d - диаметр стержня КС; L - длина геркона.

Ориентировочно длина обмотки lК = (0, 25-0, 5)L. Найденный диаметр dnp округляется до стандартной величиы.

4. Число витков обмотки

= hКlКK3M/q,

Кзм - коэффициент заполнения обмотки медью берется для принятого dпp.

5. Расчет превышения температуры обмоток для установившегося режима

= Р/(кт Sохл),

где КТ - коэффициент теплоотдачи (10 Вт м2°С-1); SOXJl -поверхность охлаждения обмотки; Р - мощность выделяемая в обмотке.

Р =I2R = /R = q/ ( 1ср ) = q/[ (dB+hk) ]

Поверхность охлажденияSoxл = (dB+2hк) 1K. ..

6. Диаметр провода dnp проверяем из условий нагрева в установившемся режиме

I2R = 4 I2 1ср /( d np) = KT Sохл. .

7. После выбора dnp проводим поверочный расчет F и с учетом коэффициента заполнения Кзм. Если обмотка рабоает в режиме кратковременного включения, то допустимое время включения

t = Т ln

где - допустимое превышение температуры; Т - постоянная времени нагрев аобмотки.


 

Т = с G / (KT Sохл.) = ?

где с - удельная теплоемкость материала провода [для меди с = 390 Вт-с/ (кг -°С) ]; G - масса провода, кг; - плотность материала провода, кг/м3 (для меди

= 8900 кг/м .

8. Нагрев геркона при повторно кратковременном режиме рассчитывается по известной методике.

 

 


 

ЛЕКЦИЯ № 15

 

5.1. ТЯГОВЫЕ ЭЛЕКТРОМАГНИТЫ

 

5.1.1. Основные понятия, физические явления в

электрических аппаратах.

5.1.2. Энергия магнитного поля и индуктивность

системы.

5.1.3. Работа, производимая якорем электромагнита

при перемещении.

5.1.4. Вычисление сил и моментов электромагнита.

5.1.5. Электромагниты переменного тока.

5.1.6. Короткозамкнутый виток.

5.1.7. Статические тяговые характеристики

электромагнитов.

5.1.8. Выбор, применение и эксплуатация тяговых

электромагнитов.

 

Основные понятия, физические явления в электрических

Аппаратах

 

Электромагнитные механизмы применяются для приведения в действие многих аппаратов. Конструкции электромагнитов равнообразны, они могут быть классифицированы:

1) по способу действия: удерживающие — для удержания тех или иных грузов или деталей (например, электромагнитные столы станков, электромагниты подъемных кранов и т. п.); притягивающие — совершают определенную работу, притягивая свой якорь;

2) по способу включения: с параллельной катушкой — ток в катушке определяется параметрами самого электромагнита и напряжением сети; с последовательной катушкой- катушка включается в силовую цепь, ток в катушке

Рйс. 5-1. Схемы электромагнитов: а, б — с поворотным якорем; в, г — с прямоходовым якорем

1 — скоба; 2 — якорь; 3 — катушка; 4 — сердечник


 

определяется не параметрами электромагнита, а теми устройствами (машины, аппараты), в цепь которых включена катушка;

3) по роду тока: постоянного тока — при параллельном включении ток в катушке зависит от сопротивления ее обмотки и приложенного напряжения, электромагнитная система работает при постоянной МДС; переменного тока — при параллельном включении ток в катушке зависит от индуктивности системы, меняющейся обратно пропорционально воздушному зазору, электромагнитная система работает при постоянстве потокосцеплений;

4) по характеру движения якоря: поворотные — якорь поворачивается вокруг какой-то оси или опоры (рис. 5-1, а и б); прямоходовые — якорь перемещается поступательно (рис. 5-1, в и г).

 


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 1036; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.041 с.)
Главная | Случайная страница | Обратная связь