Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Закономерности обработки давлением. Характеристики деформаций



 

Процессам обработки металлов давлением присущи определенные закономерности.

Закон постоянства объема. Пластическая деформация практически не влияет на плотность металла, поэтому действует закон постоянства объема: объем тела при его пластической деформации остается неизменным:

где:

– высота;

– ширина;

– длина – размеры тела до деформации;

– высота;

– ширина;

– высота – размеры тела после деформации.

Закон применяется для расчетов объема и размеров исходной заготовки, необходимой для получения поковки с заданными размерами, а также переходов и изменения размеров заготовки в процессе деформирования.

Закон подобия. При осуществлении в одинаковых условиях одних и тех же процессов пластического деформирования геометрически подобных тел из одинакового материала отношение усилий деформирования равно квадрату, а отношение затраченных работ – кубу отношений соответствующих линейных размеров. Этот закон, основанный на принципе моделирования, используется для приближенного определения усилий деформирования и затрачиваемой работы.

Закон наименьшего сопротивления. В случае возможности перемещения точек деформируемого тела в различных направлениях, каждая точка перемещается в направлении наименьшего сопротивления.

Закон позволяет учесть предпочтительное направление течения металла, определить, какая часть полости штампа заполнится быстрее, какие размеры и форму будет иметь поперечное сечение заготовки в результате ее обработки давлением.

По этому закону, при наличии трения на контактной поверхности, заготовка прямоугольного сечения при осадке будет приобретать округлую форму, имеющую наименьший периметр при данной площади.

В этом случае направлением наименьшего сопротивления является кратчайшая нормаль к периметру сечения.

 

Деформацию принято оценивать следующими величинами.

1. Абсолютные деформации:

– обжатие;

– уширение;

– удлинение.

2. Относительные деформации:

или – относительное обжатие или относительная высотная деформация;

или – относительное уширение или относительная поперечная деформация;

или – относительное удлинение или относительная продольная деформация.

3. Коэффициент, определяющий изменение длины обрабатываемого изделия – . Его называют вытяжкой или коэффициентом вытяжки.

Согласно закону постоянства объема (где: – площадь поперечного сечения до деформации, – площадь поперечного сечения после деформации).

Скорость деформации – изменение относительной деформации в единицу времени:

,

где: – степень деформации; – время.

Скорость деформации следует отличать от скорости движения деформирующего инструмента и скорости течения металла при деформации. Диапазон скоростей деформации составляет 10 –1 … 10 3, с –1.

 

Технологические свойства

При выборе металла или сплава для изготовления изделия различными способами обработки давлением учитывается способность материала к данному методу обработки.

Ковкость – свойство металла изменять свою форму под действием ударов или давления, не разрушаясь.

Степень ковкости зависит от многих параметров. Наиболее существенным из них является пластичность, характеризующая способность материала деформироваться без разрушения. Чем выше пластичность материала, тем большую степень суммарного обжатия он выдерживает.

В условиях обработки металлов давлением на пластичность влияют многие факторы: состав и структура деформируемого металла, характер напряженного состояния при деформации, неравномерность деформации, скорость деформации, температура деформации и др. Изменяя те или иные факторы, можно изменять пластичность.

Состав и структура металла. Пластичность находится в прямой зависимости от химического состава материала. С повышением содержания углерода в стали пластичность падает. Большое влияние оказывают элементы, входящие в состав сплава как примеси. Олово, сурьма, свинец, сера не растворяются в металле и, располагаясь по границам зерен, ослабляют связи между ними. Температура плавления этих элементов низкая, при нагреве под горячую деформацию они плавятся, что приводит к потере пластичности.

Пластичность зависит от структурного состояния металла, особенно при горячей деформации. Неоднородность микроструктуры снижает пластичность. Однофазные сплавы, при прочих равных условиях, всегда пластичнее, чем двухфазные. Фазы имеют неодинаковые механические свойства, и деформация получается неравномерной. Мелкозернистые металлы пластичнее крупнозернистых. Металл слитков менее пластичен, чем металл прокатанной или кованой заготовки, так как литая структура имеет резкую неоднородность зерен, включения и другие дефекты.

Неравномерность деформации. Чем больше неравномерность деформации, тем ниже пластичность. Неравномерность деформации вызывает появление дополнительных напряжений. Растягивающие напряжения всегда снижают пластичность и способствуют хрупкому разрушению. Кроме того, неравномерность напряженного состояния понижает механическую прочность материала, так как напряжения от внешней нагрузки суммируется с остаточными растягивающими напряжениями, то разрушение наступает при меньшей нагрузке.

Скорость деформации. С повышением скорости деформации в условиях горячей деформации пластичность снижается. Имеющаяся неравномерность деформации вызывает дополнительные напряжения, которые снимаются только в том случае, если скорость разупрочняющих процессов не меньше скорости деформации.

Технологические испытания

 

Для оценки способности материала воспринимать определенную деформацию в условиях, максимально приближенных к производственным, служат технологические испытания. Такие оценки носят качественный характер. Они необходимы для определения пригодности материала для изготовления изделий по технологии, предусматривающей значительную и сложную пластическую деформацию.

Для определения способности листового материала толщиной до 2 мм выдерживать операции холодной штамповки (вытяжки) применяют метод испытания на вытяжку сферической лунки с помощью специальных пуансонов, имеющих сферическую поверхность (ГОСТ 10510). Схема испытания приведена на рис.

Рис. Схема испытания на вытяжку сферической лунки по Эриксену

 

В процессе испытания фиксируется усилие вытяжки. Конструкция прибора предусматривает автоматическое прекращение процесса вытяжки в тот момент, когда усилие начинает уменьшаться (в материале появляются первые трещины). Мерой способности материала к вытяжке служит глубина вытянутой лунки.

Лист или ленту толщиной менее 4 мм испытывают на перегиб (ГОСТ 13813). Испытание проводят с помощью приспособления, изображенного на рис.

Рис. Схема испытания на перегиб

1 – рычаг; 2 – сменный поводок; 3 – образец; 4 – валики; 5 – губки; 6 - тиски

 

Образец изгибают вначале влево или вправо на 900, а затем каждый раз на 1800 в противоположную сторону. Критерием окончания испытания является разрушение образца или достижение заданного числа перегибов без разрушения.

Проволоку из цветных и черных металлов испытывают на скручивание (ГОСТ 1545) с определением числа полных оборотов до разрушения образцов, длина которых обычно составляет ( – диаметр проволоки). Применяют также испытание на перегиб (ГОСТ 1579) по схеме, аналогичной испытанию листового материала. Проводят пробу на навивание (ГОСТ 10447). Проволоку навивают плотно прилегающими витками на цилиндрический стержень определенного диаметра (рис.).

Рис. Проба на навивание проволоки

 

Число витков должно быть в пределах 5…10. Признаком того, что образец выдержал испытание, является отсутствие после навивания расслоения, отслаивания, трещин или надрывов как в основном материале образца, так и в его покрытии.

Для труб с внешним диаметром не более 114 мм применяют пробу на загиб (ГОСТ 3728). Испытание заключается в плавном загибе отрезка трубы любым способом на угол 900 (рис. 9.6. а) так, чтобы его наружный диаметр ни в одном месте не стал меньше 85 % от начального. ГОСТ устанавливает величину радиуса загиба R в зависимости от диаметра трубы D и толщины стенки S. Образец считается выдержавшим испытание, если на нем после загиба не обнаружено нарушений сплошности металла. Образцы сварных труб должны выдерживать испытания при любом положении шва.

Испытание на бортование (ГОСТ 8693) применяют для определения способности материала труб образовывать фланец заданного диаметра (рис.). Признаком того, что образец выдержал испытание, служит отсутствие после отбортовки трещин или надрывов. Допускается отбортовка с предварительной раздачей на оправке.

Испытание на раздачу (ГОСТ 8694) выявляет способность материала трубы выдерживать деформацию при раздаче на конус до определенного диаметра с заданным углом конусности (рис.). Если после раздачи образец не имеет трещин или надрывов, то он считается выдержавшим испытание.

Для труб предусмотрены испытание на сплющивание до определенного размера (рис. 9.6.г), причем для сварных труб ГОСТ 8685 предусматривает положение шва (рис.9.6.д), испытание гидравлическим давлением.

Для испытания проволоки или прутков круглого и квадратного сечения, предназначенных для изготовления болтов, гаек и других крепежных деталей методом высадки, используют пробу на осадку (ГОСТ 8817). Стандарт рекомендует определенную степень деформации. Критерием годности является отсутствие трещин, надрывов, расслоений на боковой поверхности образца.

 

Рис. Схемы испытаний труб:

а – на загиб; б – на бортование; в – на раздачу; г, д – на сплющивание

 

Для прутковых материалов широко применяется проба на изгиб: загиб до определенного угла (рис. 9.7.а), загиб до параллельности сторон (рис.9.7.б), загиб до соприкосновения сторон (рис. 9.7.в).

Рис. Схемы испытаний на изгиб:

а – загиб до определенного угла; б – загиб до параллельности сторон; в – до соприкосновения сторон

Прокат и его производство

 

Прокатка – это способ обработки пластическим деформированием – наиболее распространенный. Прокатке подвергают до 90 % всей выплавляемой стали и большую часть цветных металлов. Способ зародился в XVIII веке и, претерпев значительное развитие, достиг высокого совершенства.

Сущность процесса: заготовка обжимается (сдавливается), проходя в зазор между вращающимися валками, при этом, она уменьшается в сво¨ м поперечном сечении и увеличивается в длину. Форма поперечного сечения называется профилем.

Процесс прокатки обеспечивается силами трения между вращающимся инструментом и заготовкой, благодаря которым заготовка перемещается в зазоре между валками, одновременно деформируясь. В момент захвата металла со стороны каждого валка действуют на металл две силы: нормальная сила и касательная сила трения (рис. 10.1).

 

Рис. Схема сил, действующих при прокатке

Способы прокатки

 

Когда требуется высокая прочность и пластичность, применяют заготовки из сортового или специального проката. В процессе прокатки литые заготовки подвергают многократному обжатию в валках прокатных станов, в результате чего повышается плотность материала за сч¨ т залечивания литейных дефектов, пористости, микротрещин. Это прида¨ т заготовкам из проката высокую прочность и герметичность при небольшой их толщине.

Существуют три основных способа прокатки, имеющих определенное отличие по характеру выполнения деформации: продольная, поперечная, поперечно – винтовая (рис.10.2).

 

Рис. Схемы основных видов прокатки:

а – продольная; б – поперечная; в – поперечно – винтовая

 

При продольной прокатке деформация осуществляется между вращающимися в разные стороны валками (рис.10.2 а). Заготовка втягивается в зазор между валками за сч¨ т сил трения. Этим способом изготавливается около 90 % проката: весь листовой и профильный прокат.

Поперечная прокатка (рис. 10.2.б). Оси прокатных валков и обрабатываемого тела параллельны или пересекаются под небольшим углом. Оба валка вращаются в одном направлении, а заготовка круглого сечения – в противоположном.

В процессе поперечной прокатки обрабатываемое тело удерживается в валках с помощью специального приспособления. Обжатие заготовки по диаметру и придание ей требуемой формы сечения обеспечивается профилировкой валков и изменением расстояния между ними. Данным способом производят специальные периодические профили, изделия представляющие тела вращения – шары, оси, шестерни.

Поперечно – винтовая прокатка (рис. 10.2.в). Валки, вращающиеся в одну сторону, установлены под углом друг другу. Прокатываемый металл получает ещ¨ и поступательное движение. В результате сложения этих движений каждая точка заготовки движется по винтовой линии. Применяется для получения пустотелых трубных заготовок.


Поделиться:



Последнее изменение этой страницы: 2017-05-05; Просмотров: 518; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.025 с.)
Главная | Случайная страница | Обратная связь