Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Особенности водно-солевого обмена и синдромы его нарушения



Ткани и органы ребенка содержат значительно больше воды, чем у взрослого, по мере роста ребенка содержание воды уменьшается. Общее количество воды на третьем месяце внутриутробного развития составляет 75, 5 % от массы тела. К рождению у доношенного новорожденного – 95, 4 %. После рождения организм постепенно теряет воду, у детей первых 5 лет вода составляет 70 % от массы тела, у взрослого – 60–65 %. Наиболее интенсивно новорожденный теряет воду в период физиологической убыли массы тела за счет испарения при дыхании, с поверхности кожи, экскреции с мочой и меконием, причем потеря 8, 7 % воды в этот период не сопровождается клиническим обезвоживанием. Хотя общее количество воды на 1 кг массы тела у детей больше, чем у взрослого, на единицу поверхности тела содержание жидкости у детей значительно меньше. На содержание воды в организме влияют характер питания и содержание жира в тканях, при преобладании углеводов в питании увеличивается гидрофильность тканей, жировая ткань бедна водой (содержит не более 22 %). Химический состав внутриклеточной жидкости и внеклеточной (плазмы крови, интерстициальной жидкости) различен. Интерстициальная жидкость отделена от крови полупроницаемой мембраной, ограничивающей выход белка за пределы сосудистого русла. Каждые 20 мин между кровью и интерстициальной жидкостью проходит количество воды, равное массе тела. Объем циркулирующей плазмы обменивается в течение 1 мин. Объем плазмы с возрастом относительно уменьшается. С возрастом не только уменьшается общее количество воды, но происходит и изменение в содержании внутри– и внеклеточной жидкости. Водный обмен у детей протекает более интенсивно, чем у взрослых. У детей раннего возраста отмечается большая проницаемость клеточных мембран, фиксация жидкости в клетке и межклеточных структурах более слабая. Особенно это касается межуточной ткани. У ребенка внеклеточная вода более подвижна. Высокая проницаемость клеточных мембран определяет равномерное распределение в организме не только жидкости, но и введенных парентерально веществ.

Потребность в воде у детей значительно больше, чем у взрослых.

Таблица 18. Общий баланс воды в физиологическом состоянии ребенка

Состав минеральных солей и их концентрация определяют осмотическое давление жидкости, важнейшие катионы – одновалентные: натрий, калий; двухвалентные: кальций, магний. Им соответствуют анионы хлора, карбоната, ортофосфата, сульфата и др. В целом имеется некоторый избыток оснований, так что рН = 7, 4. Электролиты оказывают основное влияние на распределение жидкостей. Такие осмотически активные вещества, как глюкоза и мочевина, в распределении жидкости в организме имеют небольшое значение, так как свободно проникают через сосудистую и клеточную мембраны (см. табл. 19).

Таблица 19. Распределение электролитов в организме

Особенности белкового обмена и потребность в белке детей различного возраста. Семиотика нарушений

2. Особенности белкового обмена и потребность в белке детей различного возраста. Семиотика нарушений

Белки выполняют в организме различные функции:

1) пластические функции – распад белка с высвобождением аминокислот, в том числе незаменимых;

2) белки – составная часть различных ферментов, гормонов, антител;

3) белки участвуют в поддержании кислотно-щелочного состояния;

4) белки – источник энергии, при распаде 1 г белка образуется 4 ккал;

5) белки осуществляют транспорт метаболитов.

По разнице между азотом пищи и его выделением и мочой, и фекалиями судят о его потреблении для образования новых тканей.

У детей после рождения или маловесных несовершенство усвоения любого пищевого белка может приводить к неутилизации азота. В противоположность взрослым у детей положительный азотистый баланс: количество поступившего азота с пищей всегда превышает его выведение. Уровень ретенции азота соответствует константе роста и скорости синтеза белка.

Свойства пищевых белков, учитываемые при нормировании питания

1. Биодоступность (всасываемость) рассчитывается по формуле:

(N поступивший – N выделенный с калом) х 100 / N поступивший.

2. Чистая утилизация (NPU, %) рассчитывается по формуле:

N пищи – (N стула + N мочи) х 100 / N пищи.

3. Коэффициент эффективности белка – прибавка в массе тела на 1 г съеденного белка в эксперименте.

4. Аминокислотный скор рассчитывается по формуле:

(Данная аминокислота в данном белке в мг х 100) / Данная аминокислота в эталонном белке в мг.

Идеальный белок – женское молоко с утилизацией 94 % и скор 100, и целое яйцо с утилизацией 87 % и скор 100 (см. табл. 14).

Таблица 14. Скорость синтеза белка в различные возрастные периоды

Таблица 15. Рекомендуемое потребление белка для детей (МЗ России, 1991 г.)

Таблица 16. Безопасные уровни потребления белка у детей раннего возраста, г/(кг в сутки))

Безопасный уровень потребления белка – количество, необходимое для удовлетворения физиологических потребностей и поддержания здоровья у детей – выше, чем у взрослых. Усвоение азота организмом зависит как от количества, так и от качества белка – содержания жизненно необходимых аминокислот. Ребенку необходимо в 6 раз больше аминокислот, чем взрослому (см. табл. 16).

Если у взрослых незаменимыми являются 8 аминокислот, то у детей в возрасте до 5 лет их 13. При чрезмерной белковой перегрузке у детей более легко, чем у взрослых, возникают аминоацидемии, что может проявиться задержкой развития, особенно нервно-психического. Дети более чувствительны к голоданию, чем взрослые, дефицит питания приводит к частым инфекциям. Длительная недостаточность белка в рационе питания детей первых 3 лет жизни может вызвать необратимые изменения, сохраняющиеся пожизненно. Определение в плазме содержания общего белка и его фракций отражает процессы его синтеза и распада (см. табл. 17).

Содержание общего белка в сыворотке новорожденного ниже, чем у матери. На протяжении первого года жизни происходит снижение общего белка в сыворотке крови. Особенно низкие показатели наблюдаются у детей в возрасте 2–6 недель (50, 8 г/л), с 6 месяцев отмечается постепенное повышение его уровня, в младшем школьном возрасте они ниже, чем у взрослых.

Таблица 17. Потребность в эссенциальных аминокислотах (мг на 1 г белка)

Фракции белка также более низкие, синтез альбумина составляет 0, 4 г/кг/сутки, у новорожденного процентное содержание альбумина относительно выше, чем у матери. На первом году жизни происходит снижение содержания альбумина. Динамика содержания? -глобулина аналогична таковой альбумина. В течение первого полугодия жизни особенно низкие показатели? -глобулина, что связано с его распадом, синтез собственных глобулинов происходит медленно. Соотношение глобулиновых фракций? -1 – 1, ? -2 – 2, ? – 3, ? – 4 части. При острых воспалительных заболеваниях изменения белковой формулы крови характеризуются увеличением? -глобулинов при нормальном содержании? -глобулинов и уменьшенном количестве альбуминов.

При хроническом воспалении имеет место повышение? -глобулина при нормальном или слегка повышенном содержании? -глобулина, уменьшении альбумина.

Подострое воспаление характеризуется одновременным увеличением? -, ? -глобулинов при снижении содержания альбуминов.

Появление гипергаммаглобулинемии указывает на хронический период болезни, гиперальфаглобулинемия – на обострение. У детей содержание аминокислот приближается к таковым значениям у взрослых. У новорожденных наблюдается физиологическая азотемия с 9 до 70 ммоль/л, к 5—12-му дню уровень достигает такового у взрослого (28 ммоль/л). У недоношенных детей степень азотемии тем выше, чем меньше масса ребенка.

Содержание белка в пище значительно влияет на уровень остаточного азота крови. У взрослого продукты азотистого обмена выводятся с мочой в виде нетоксической мочевины, синтез которой осуществляется в печени. У детей в возрасте до 3 месяцев выделяется 0, 14 г/кг в сутки, у новорожденного значительное количество в общем азоте мочи составляет мочевая кислота. Ее избыточное содержание в моче является причиной мочекислых инфарктов почек, которые наблюдаются у 75 % новорожденных.

Дети раннего возраста выводят азот белка в виде аммиака, содержание которого больше, чем у взрослых. В этом возрасте функция печени недостаточна. В этих условиях избыточная белковая нагрузка может привести к появлению токсических метаболитов в крови.

Врожденные заболевания, в основе которых лежит нарушенный метаболизм белков

Аминоацидопатия – дефицит ферментов, участвующих в обмене белков, их более 30 форм.

Клинические проявления:

1) нервно-психические нарушения – отставание нервно-психического развития в виде олигофрении;

2) судорожный синдром, который может появиться в первые недели жизни;

3) изменения мышечного тонуса в виде гипотонии или гипертонии;

4) задержка развития речи;

5) расстройства зрения;

6) изменения кожи (нарушения пигментации кожи: альбинизм, непереносимость солнца, пеллагрическая кожа, экзема, ломкость волос;

7) желудочно-кишечные симптомы (рвота);

8) поражение печени до развития цирроза с портальной гипертензией и желудочно-кишечными кровотечениями;

9) почечная симптоматика (гематурия, протеинурия);

10) анемия, лейкопения, тромбоцитопатии, повышенная агрегация тромбоцитов.

Заболевания, в основе которых лежит нарушение синтеза белков:

1) отсутствие образования конечного продукта – гемофилия (отсутствие синтеза антигемофильного глобулина), афибриногенемия (отсутствие в крови фибриногена);

2) накопление промежуточных метаболитов – фенилкетонурия;

3) второстепенные метаболические пути, могущие становиться основными и перегруженными, а образующиеся в норме метаболиты могут накапливаться в необычно высоких количествах – гемоглобинопатии, которые клинически проявляются спонтанным или вызванным каким-либо фактором гемолиза эритроцитов, увеличением селезенки. Недостаточность сосудистого или тромбоцитарного фактора Виллебранда вызывает повышенную кровоточивость.

60У детей первого года жизни содержание углеводов составляет 40 %, после 1 года оно возрастает до 60 %. В первые месяцы жизни потребность в углеводах покрывается за счет материнского молока, при искусственном вскармливании ребенок также получает сахарозу или мальтозу. После введения прикорма в организм попадают полисахариды (крахмал, гликоген), что способствует выработке амилазы поджелудочной железой начиная с 4 месяцев.

Моносахариды (глюкоза, фруктоза, галактоза) подвергаются резорбции на поверхности кишечных ворсинок слизистой оболочки кишечника, причем с затратой энергии макроэргической связи АТФ. Активность лактазы наиболее низкая среди дисахараз, поэтому чаще наблюдается лактазная недостаточность. Нарушения абсорбции лактозы (молочного сахара), особенно при грудном вскармливании, клинически проявляется диареей, для которой наряду с частым жидким стулом (более 5 раз в сутки) характерны пенистые испражнения кислой реакции. Может развиться дегидратация.

В более позднем возрасте происходит репрессия лактазы, чем объясняется то, что значительное большинство взрослых не переносят натурального молока, а кисломолочные продукты усваивают хорошо. Реже наблюдается врожденная мальабсорбция сахарозы и изомальтозы, что проявляется диареей у детей, находящихся на искусственном вскармливании.

Причины дисахаридазной недостаточности:

1) следствие воздействия повреждающих факторов (таких как энтериты, недостаточность питания, лямблиоз, иммунологическая недостаточность, целиакия, непереносимость белков коровьего молока, гипоксия, желтуха);

2) незрелость щеточной каймы;

3) следствие хирургического вмешательства.

При избытке в продуктах питания глюкозы и галактозы они подвергаются превращению в печени в гликоген. Синтез гликогена начинается на 9-й неделе внутриутробного развития, его быстрое накопление происходит перед рождением, что обеспечивает энергетическую потребность новорожденного первых дней жизни, когда ребенок получает мало молока. К 3-й неделе жизни концентрация гликогена достигает таких же значений у взрослых, но запасы гликогена расходуются быстрее, чем у взрослых. Соотношение интенсивности процессов гликогенеза и гликогенолиза определяет уровень гликемии. Центральным звеном регуляции гликемии является функциональное объединение нервных центров, расположенных в отдельных отделах ЦНС, и эндокринных желез (поджелудочной, щитовидной желез, надпочечников).

В зависимости от дефицита тех или иных ферментов, участвующих в метаболизме гликогена, выделяют различные формы гликогеноза.

I тип – гепаторенальный гликогеноз, болезнь Гирке, характеризуется недостаточностью глюкозо-6-фосфатазы, самый тяжелый вариант. Клинически проявляется после рождения или в грудном возрасте. Характеризуется гепатомегалией, гипогликемическими судорогами, комой, кетозом, селезенка никогда не увеличивается. В дальнейшем происходят отставание в росте, диспропорция телосложения – живот увеличен, туловище удлинено, ноги короткие, голова большая. В перерывах между кормлениями отмечаются бледность, потливость, потря сознания в результате гипогликемии.

II тип – болезнь Помпе, в основе которой лежит недостаточность кислой мальтазы. Клинически проявляется после рождения, такие дети быстро умирают. Наблюдаются гепато– и спленомегалия, мышечная гипотония, сердечная недостаточность.

III тип – болезнь Кори, обусловленая врожденным дефицитом амило-1, 6-глюкозидазы – ограниченный гликогенолиз без тяжелой гипогликемии и кетоза.

IV тип – болезнь Андерсена – результат образования гликогена неправильной структуры. Наблюдаются желтуха, гепатомегалия, формируется цирроз печени с портальной гипертензией, осложненный профузными желудочно-кишечными кровотечениями.

V тип – мышечный гликогеноз развивается в связи с дефицитом мышечной фосфорилазы, может проявиться на 3-м месяце жизни, когда обнаруживается, что дети не способны длительно сосать грудь. Наблюдается ложная гипертрофия поперечно-полосатых мышц.

VI тип – болезнь Герца – обусловлен дефицитом печеночной фосфорилазы. Клинически наблюдаются гепатомегалия, отставание в росте, течение благоприятное. Содержание глюкозы в крови – показатель углеводного обмена. В момент рождения гликемия соответствует таковой у матери, с первых часов отмечается падение сахара за счет недостатка контринсулярных гормонов и ограниченность запасов гликогена. К 6-му дню содержание гликогена повышается, но его уровень ниже, чем у взрослого.

После первого года жизни повышение сахара отмечается к 6 годам и к 12 годам, что совпадает с усилением роста детей и высокой концентрацией соматотропного гормона. Суточная доза глюкозы должна составлять от 2 до 4 г/кг массы тела. У детей отмечается более тяжелое течение сахарного диабета, чаще он проявляется в период особенно интенсивного роста. Клинически проявляется жаждой, полиурией, похуданием, повышением аппетита, обнаруживаются гипергликемия и глюкозурия, часто кетоацидоз. В основе заболевания лежит недостаточность инсулина. В сыворотке крови новорожденного и ребенка первого года жизни содержится большое количество молочной кислоты, что указывает на преобладание анаэробного гликолиза (при аэробных условиях расщепления по гликолитической цепи преобладает пировиноградная кислота).


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 469; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.029 с.)
Главная | Случайная страница | Обратная связь