Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ОТ МЕТОДОЛОГИЧЕСКИХ ИДЕЙ К ТЕОРИИ И НОВОЙ КАРТИНЕ МИРА



Первым шагом на пути к специальной теории относительности была фиксация принципа относительности в качестве одного из наиболее важных операциональных оснований, коррелятивно которому должны вводиться в фундамент физического познания те или иные онтологические представления. Такая трактовка принципа относительности была намечена ещё Пуанкаре, но в наиболее отчётливой форме она выражена в работах Эйнштейна. Принцип относительности рассматривался Эйнштейном в двух аспектах.

Первый аспект рассмотрения принципа относительности характеризует его как методологический регулятив теоретического описания реальности. На языке такого описания физическая лаборатория, движущаяся равномерно и прямолинейно, обозначается как инерциальная система отсчёта, и «согласно принципу относительности законы природы не зависят от движения системы отсчёта» 4. При теоретическом описании в физике используется язык математики. На этом языке система отсчёта характеризуется как система координат, а законы природы выражаются в форме уравнений, в которых определённым образом связаны физические величины.

Независимость законов природы от движения системы отсчёта формулируется как требование ковариантности соответствующих уравнений относительно преобразования системы координат (при переходе от одной инерциальной системы отсчёта к другой). Второй аспект представлял принцип относительности в качестве глубинного постулата экспериментально-измерительной деятельности. В этом аспекте формулировка принципа относительности утверждает, что физические процессы протекают одинаково во всех лабораториях, движущихся равномерно и прямолинейно, а поэтому никакими экспериментами внутри физической лаборатории нельзя обнаружить её инерциального движения.

Принцип воспроизводимости экспериментов и измерений конкретизируется не только посредством принципов воспроизводимости экспериментов в разных точках пространства и в различные моменты времени (на что указывалось выше), но и посредством принципов, фиксирующих влияние движения лаборатории на протекание физических процессов.

Физические лаборатории всегда связаны с движущимися телами, и проблема воспроизводимости экспериментов и измерений требует учёта этого обстоятельства. Если существуют ситуации, когда движение лаборатории вносит возмущения в протекание процесса, то необходим способ учёта этих возмущающих воздействий. Для этого следует выделить некоторую эталонную ситуацию, в которой относительное движение двух лабораторий не изменит картины исследуемого процесса. Отклонения от данной ситуации уже можно рассматривать как возмущения, которые принципиально могут быть выявлены и учтены (контроль над такими возмущениями возможен только тогда, когда известна ситуация, в которой они отсутствуют). В классической физике с самого начала её формирования в качестве эталонной ситуации рассматривалось инерциальное движение.

Такой подход имеет довольно глубокие основания (хотя последние не всегда осознавались в классическом естествознании). Дело в том, что экспериментальное исследование физического процесса предполагает, что он должен быть получен в максимально «чистом» виде. А для этого необходимо изолировать лабораторию от внешних воздействий, которые могут накладываться на изучаемый процесс, искажая или затемняя его, либо компенсировать такие воздействия. В предельном случае, допуская полную изоляцию лаборатории от внешних воздействий, мы получаем идеализированную лабораторию, которая по определению является инерциальной системой отсчёта (на неё не действуют внешние силы).

Экспериментально-измерительная деятельность физики предполагает, что всегда возможно выявить ситуацию, когда движение реальной лаборатории может с определённым допуском считаться инерциальным. В каждой такой (локально-инерциальной) лаборатории при прочих равных условиях все процессы будут протекать одинаково (никакими экспериментами внутри лаборатории нельзя обнаружить её относительного движения), а поэтому результаты экспериментов будут воспроизводимы. Поскольку процессы природы протекают в соответствии с объективными законами, то возможность воспроизведения одного и того же процесса в различных инерциально движущихся лабораториях означает, что законы природы не зависят от инерциального движения системы отсчёта.

Принцип относительности как раз и выражает это содержание и, таким образом, предстает как формулировка весьма важных допущений, которые лежат в фундаменте экспериментально-измерительных процедур физики. Интерпретируя принцип относительности как наиболее важный компонент схемы метода, посредством которого выявляются характеристики физического мира, Эйнштейн формулирует проблему онтологических постулатов физики в необычном с классической точки зрения виде: он ставит вопрос, как будет выглядеть физическая реальность (какова будет физическая картина мира), если принцип относительности распространяется на описание любых взаимодействий (в том числе и электромагнитных) 5.

Реализуя эту программу, Эйнштейн проанализировал онтологические постулаты физики конца XIX века, составляющие электродинамическую картину мира. Это был второй шаг на пути к специальной теории относительности. В процессе анализа обнаружилось, что постулат о существовании мирового эфира, заполняющего абсолютное пространство, несовместим с принципом относительности, поскольку он приводит к неодинаковому описанию электромагнитных процессов в различных инерциальных системах отсчёта. Это означало, что мировой эфир принципиально ненаблюдаемый объект, так как он не укладывался в схему экспериментально-измерительных процедур физики.

Подчеркнём особо это важное обстоятельство. Элиминация из физической картины мира представлений о мировом эфире как о субстанции, передающей электромагнитные взаимодействия, обычно связывается с результатами опытов А. Майкельсона, А. Физо и других, не обнаруживших движения Земли относительно эфира. В своих многочисленных изложениях СТО Эйнштейн также использует эту аргументацию. Но в первой своей работе «К электродинамике движущихся тел», содержащей изложение всех основных идей новой теории, Эйнштейн лишь вскользь говорит о неудавшихся попытках «обнаружить движение Земли» относительно «светоносной среды», но не упоминает опыта Майкельсона 6. Более того, он отмечал в одном из своих писем, что при построении СТО опыт Майкельсона не сыграл решающей роли (это обстоятельство тщательно проанализировал Холтон, и его анализ подтвердил справедливость отмеченного утверждения Эйнштейна 7).

Чтобы квалифицировать постулат о мировом эфире как не соответствующий принципу наблюдаемости, ссылки на результаты конкретных опытов, типа опыта Майкельсона, были необязательны (хотя сами эти опыты могли выступить в качестве подтверждения ненаблюдаемости эфира). Важно, чтобы была выявлена структура экспериментально-измерительной практики и показано, что в ней не может быть принципиально зафиксирован такой гипотетический объект, как мировой эфир.

Принцип относительности как раз и характеризовал весьма существенные аспекты этой структуры. Поэтому противоречие постулатов картины мира принципу относительности означало, что данные постулаты не имеют операционального обоснования и должны быть пересмотрены. С этих позиций Эйнштейн критиковал не только представление об эфире, но и постулат о существовании абсолютного пространства и времени. Этот постулат выделял лабораторию, покоящуюся относительно абсолютного пространства, в качестве привилегированной системы отсчёта, отличной от движущихся лабораторий, что противоречило принципу относительности.

После того как были выявлены «слабые точки» электродинамической картины мира, возникли новые проблемы. Элиминация представлений об эфире и абсолютном пространстве разрушала прежнюю картину физической реальности, на которую опиралось ядро электродинамики Максвелла — Лоренца. Поэтому требовалось установить, как это скажется на электродинамике движущихся тел. Такого рода анализ лежал в основе формулировки второго (после принципа относительности) фундаментального принципа СТО — постулата постоянства скорости света.

Эфир в теории Лоренца включал важное физическое свойство: независимо от того, движется или покоится тело, излучающее свет, световой луч распространяется в системе, покоящейся относительно эфира, с постоянной скоростью с. Чтобы элиминация эфира не разрушила классической электродинамики, требовалось постулировать, что существует система отсчёта, в которой каждый световой луч распространяется в пустоте с постоянной скоростью с независимо от движения источника. Но поскольку, согласно принципу относительности, все инерциальные системы отсчёта физически эквивалентны, то отсюда следовало, что принцип постоянства скорости света справедлив для любой системы отсчёта 8, и это позволяло придать ему статус универсального фундаментального постулата теории. Данный постулат включал специфическое содержание и в этом смысле был независим от принципа относительности. Последний, однако, позволял обосновать универсальность постулата о постоянстве скорости света, что явилось третьим важным шагом в формировании СТО.

Четвёртый же, решающий шаг состоял в анализе измерительных процедур, посредством которых обосновывались свойства пространства и времени. В соответствии с идеалом операционального обоснования постулатов теории Эйнштейн тщательно проанализировал процедуры измерения пространственных и временных интервалов.

Он выявил схему этих процедур, показав, что в их основе лежат операции с жёсткими стержнями инерциальной системы отсчёта и её часами, синхронизированными с помощью световых сигналов 9. Роль этих процедур в построении теории относительности уже отмечена в методологической и историко-физической литературе. Однако не всегда подчёркивается то важное обстоятельство, что Эйнштейн из анализа схемы измерения временных и пространственных интервалов получил преобразования Лоренца (этот вывод содержится в работе Эйнштейна «К электродинамике движущихся тел»). Такой вывод придавал преобразованиям Лоренца и их следствиям реальный физический смысл.

Характеристики пространственных и временных интервалов, вытекающие из преобразований Лоренца, обосновывались схемой измерений, которая выявляла реальные пространственно-временные свойства и отношения природных объектов. Поэтому данные характеристики следовало считать отражением признаков пространства-времени самой природы.

Если все эти познавательные процедуры описать в терминах современного методологического анализа, то можно сказать, что Эйнштейн осуществил операцию конструктивного обоснования тех новых гипотетических свойств пространственно-временных интервалов, которые следовали из преобразования Лоренца. И это было как раз то самое недостающее звено, которое связывало отдельные мозаичные предположения, принципы и математические выражения в целостную систему новой физической теории. Только после того как преобразования Лоренца получили связь с опытом, можно было считать физически корректными все основные следствия из них (закон сложения скоростей, закон изменения массы с изменением скорости, связь массы и энергии, и так далее). Эти следствия также вывел и обосновал Эйнштейн.

Эйнштейн вывел преобразования Лоренца не из требований ковариантности уравнений, а на основе анализа локальной процедуры синхронизации часов. Пуанкаре отмечал важность такой процедуры, но не показал, как можно вывести отсюда преобразования Лоренца. В методологическом отношении особо важно подчеркнуть, что подход Эйнштейна к обоснованию гипотез, связанных с новыми пространственно-временными преобразованиями, был тем самым методом, который фиксировал своеобразный водораздел между классическим и неклассическим построениями физической теории.

В явной форме процедура конструктивной проверки новых абстрактных объектов, возникающих на стадии гипотезы, стала применяться только в неклассических исследованиях. Её можно обнаружить, например, в истории квантовой механики, когда знаменитые соотношения неопределённости, в принципе выводимые в качестве следствия из применяемых в математическом аппарате теории перестановочных соотношений, Гейзенберг получает на основе знаменитого мысленного эксперимента по наблюдению за положением электронов с помощью идеального микроскопа (Гейзенберг показал, что взаимодействие электрона с квантом света не позволяет одновременно со сколь угодно большой точностью установить его координату и импульс). Та же стратегия лежала и в основе процедур Бора — Розенфельда в квантовой электродинамике.

Величины и их основные признаки, вводимые «сверху» на основе математической гипотезы, получают подтверждение в системе мысленных экспериментов, аккумулирующих реальные особенности опыта. Только после этого им можно приписывать реальный физический смысл. После того как Эйнштейн ввёл новую интерпретацию преобразований Лоренца, представления физической картины мира об абсолютном пространстве и времени были заменены релятивистскими представлениями. Правда, здесь ещё не было целостного образа пространства-времени, но переход к нему уже обозначился. И хотя новое понимание пространства и времени, включённое в физическую картину мира, противоречило стереотипам обыденного здравого смысла, оно довольно быстро обрело признание в научном сообществе и отрезонировало в других сферах культуры.

Европейская культура конца XIX — начала XX века всем своим предшествующим развитием оказалась подготовленной к восприятию новых идей, лежащих в русле неклассического типа рациональности. Можно указать не только на своеобразную перекличку между идеями теории относительности Эйнштейна и концепциями «лингвистического авангарда» 70–80-х годов XIX века (И. Винтелер и другие), но и на их резонанс с формированием новой художественной концепции мира в импрессионизме и постимпрессионизме, а также новыми для литературы последней трети XIX столетия способами описания и осмысления человеческих ситуаций (например, в творчестве Достоевского), когда сознание автора, его духовный мир и его мировоззренческая концепция не стоят над духовными мирами его героев, как бы со стороны, из абсолютной системы координат описывая их, а сосуществуют с этими мирами и вступают с ними в равноправный диалог 10.

Этот своеобразный резонанс идей, развиваемых в различных сферах культурного творчества в конце XIX — начале XX столетия, обнаруживал глубинные мировоззренческие основания, на которых вырастала новая, неклассическая наука и в развитии которых она принимала активное участие. Новые мировоззренческие смыслы, постепенно укоренявшиеся в эту эпоху в культуре техногенной цивилизации, во многом обеспечивали онтологизацию тех необычных для здравого смысла представлений о пространстве и времени, которые были введены Эйнштейном в физическую картину мира.

Дальнейшее развитие этих представлений было связано с творчеством Г. Минковского, который разработал новую математическую форму специальной теории относительности и ввёл в физическую картину мира целостный образ пространственно-временного континуума, характери-зующегося абсолютностью пространственно-временных интервалов при относительности их разделения на пространственные и временные интервалы в каждой инерциальной системе отсчёта.

Утверждение в физике новой картины исследуемой реальности сопровождалось дискуссиями философско-методологического характера, в ходе которых осмысливались и обосновывались новые представления о пространстве и времени и новые методы формирования теории. В процессе такого анализа уточнялись и развивались философские предпосылки, которые обеспечивали перестройку классических идеалов и норм исследования и электродинамической картины мира. Таким путём они превращались в философские основания релятивистской физики, во многом способствуя её интеграции в ткань современной культуры. Таким образом, перестройка оснований науки не является актом внезапной смены парадигмы (как это считает Т. Кун), а представляет собой процесс, который начинается задолго до непосредственного преобразования норм исследования и научной картины мира.

Начальной фазой этого процесса является философское осмысление тенденций научного развития, рефлексия над основаниями культуры и движение в поле собственно философских проблем, позволяющее философии наметить контуры будущих идеалов научного познания и выработать категориальные структуры, закладывающие фундамент для построения новых научных картин мира.

Все эти предпосылки и «эскизы» будущих оснований научного поиска конкретизируются и дорабатываются затем в процессе методологического анализа проблемных ситуаций науки. В ходе этого анализа уточняется обоснование новых идеалов науки и формируются соответствующие им нормативы, которые целенаправляют построение ядра новой теории и новой научной картины мира.

Рефлексия над уже построенной теорией, как правило, приводит к уточнению и развитию методологических установок, к более адекватному осмыслению новых идеалов и норм, запечатлённых в соответствующих теоретических образцах. Поэтому перестройка оснований науки включает не только начальную, но и завершающую стадию становления новой фундаментальной теории, предполагая многократные переходы из сферы специально-научного в сферу философско-методологического анализа.

НАУЧНЫЕ РЕВОЛЮЦИИ И МЕЖДИСЦИПЛИНАРНЫЕ ВЗАИМОДЕЙСТВИЯ

Научные революции возможны не только как результат внутридисциплинарного развития, когда в сферу исследования включаются новые типы объектов, освоение которых требует изменения оснований научной дисциплины. Они возможны также благодаря междисциплинарным взаимодействиям, основанным на «парадигмальных прививках» — переносе представлений специальной научной картины мира, а также идеалов и норм исследования из одной научной дисциплины в другую. Такие трансплантации способны вызвать преобразования оснований науки без обнаружения парадоксов и кризисных ситуаций, связанных с её внутренним развитием. Новая картина исследуемой реальности (дисциплинарная онтология) и новые нормы исследования, возникающие в результате «парадигмальных прививок», открывают иное, чем прежде, поле научных проблем, стимулируют открытие явлений и законов, которые до «парадигмальной прививки» вообще не попадали в сферу научного поиска.

В принципе, этот путь научных революций не был описан с достаточной глубиной ни Т. Куном, ни другими исследователями в западной философии науки. Между тем он является ключевым для понимания процессов возникновения и развития многих научных дисциплин. Более того, вне учёта особенностей этого пути, основанного на парадигмальных трансплантациях, нельзя понять той великой научной революции, которая была связана с формированием дисциплинарно организованной науки.

Большинство наук, которые мы сегодня рассматриваем в качестве классических дисциплин, — биология, химия, технические и социальные науки — имеют корни в глубокой древности. Историческое развитие знания накапливало факты об отдельных особенностях исследуемых в них объектах. Но систематизация фактов и их объяснение длительное время осуществлялись посредством натурфилософских схем.

После того как возникла первая теоретически оформленная область научного знания — физика, а механическая картина мира приобрела статус универсальной научной онтологии, начался особый этап истории наук. В большинстве из них предпринимались попытки применить для объяснения фактов принципы и идеи механической картины мира.

Механическая картина мира, хотя она и сформировалась в рамках физического исследования, в эту историческую эпоху функционировала и как естественнонаучная, и как общенаучная картина мира. Обоснованная философскими установками механистического материализма, она задавала ориентиры не только для физиков, но и для учёных, работающих в других областях научного познания. Неудивительно, что стратегии исследований в этих областях формировались под непосредственным воздействием идей механической картины мира.

Весьма показательным примером в этом отношении может служить развитие химии рассматриваемого исторического периода (XVII–XVIII века). В середине XVII столетия, когда химия ещё не конституировалась в самостоятельную науку, она либо включалась в систему алхимических представлений, либо выступала в качестве набора знаний, подсобных для медицины. Начало становления химии как науки было во многом связано с внедрением в химию атомно-курпускулярных представлений. Во второй половине XVII век Р. Бойль выдвинул программу, которая транслировала в химию принципы и образцы объяснения, сформировавшиеся в механике. Бойль предлагал объяснить все химические явления, исходя из представлений о движении «малых частиц материи» (корпускул). На этом пути химия, по мнению Бойля, должна была отделить себя от алхимии и медицины и превратиться в самостоятельную науку.

Исходя из универсальности действия законов механики, он заключил, что принципы механики должны быть «применимы и к скрытым процессам, происходящим между мельчайшими частицами тел» 11. Функционирование механической картины мира как исследовательской программы прослеживается не только на материале взаимодействия химии и физики. Аналогичный механизм развития научных знаний может быть обнаружен и при анализе отношений между физикой и биологией на этапе становления дисциплинарной науки XVIII века.

На первый взгляд биология не имела столь тесных контактов с физикой, как химия. Тем не менее механическая картина мира в ряде ситуаций оказывала довольно сильное влияние и на стратегию биологических исследований. Показательны в этом отношении исследования Ламарка, одного из основоположников идеи биологической эволюции.

Пытаясь найти естественные причины развития организмов, Ламарк во многом руководствовался принципами объяснения, заимствованными из механики. Он опирался на сложившийся в XVIXI столетии вариант механической картины мира, включавшей идею «невесомых» носителей различных типов сил, и полагал, что именно невесомые флюиды являются источником органических движений и изменения в архитектонике живых существ.

Природа, по Ламарку, является ареной постоянного движения, перемещения и циркуляции бесчисленного множества флюидов, среди которых электрический флюид и теплород являются главными «возбудителями жизни» 12. Развитие жизни, с его точки зрения, — это «нарастающее влияние движения флюидов», которое выступало причиной усложнения организмов. «Кто не увидит, — писал он, — что именно в этом проявляется исторический ход явлений организации, наблюдаемой у рассматриваемых животных, кто не увидит его в этом возрастающем усложнении их в общем ряде при переходе от более простого к более сложному» 13. Именно обмен флюидами между окружающей средой и организмами, возрастание этого обмена при усилении функционирования органов приводило к изменению последних. Приспособление организмов к условиям обитания, по Ламарку, усиливает функционирование одних органов и ослабляет функционирование других.

Соответствующий обмен флюидами со средой вызывает при этом мелкие изменения в каждом органе. В свою очередь, такие изменения наследуются, что, согласно Ламарку, может привести при длительном накоплении изменений к довольно сильной перестройке органов и появлению новых видов. Как видим, объяснение, которое использовал Ламарк, во многом было инициировано принципами, транслированными из механической картины мира.

Функционирование механической картины мира в качестве общенаучной исследовательской программы проявилось не только при изучении различных процессов природы, но и по отношению к знаниям о человеке и обществе, которые пыталась сформировать наука XVIII столетия. Конечно, рассмотрение социальных объектов в качестве простых механических систем представляло собой огромное упрощение. Эти объекты принадлежат к классу сложных, развивающихся систем, с включёнными в них человеком и его сознанием. Они требуют особых методов исследования. Однако, чтобы выработать такие методы, наука должна была пройти длительный путь развития. В XVIII веке для этого ещё не было объективных предпосылок. Научный подход в эту эпоху отождествлялся с теми его образцами, которые реализовались в механике, а поэтому естественным казалось построение науки о человеке и обществе в качестве своего рода социальной механики на основе применения принципов механической картины мира.

Весьма характерным примером такого подхода были размышления Ж. Ламетри и П. Гольбаха о природе человека и общества. Опираясь на идеи, развитые в механической картине мира, Ламетри и Гольбах активно использовали механические аналогии при объяснении социальных явлений и обсуждении проблем человека как природного и социального существа.

Рассматривая человека прежде всего как часть природы, как особое природное тело, Ламетри представлял его в качестве особого рода механической системы. Он писал, что человек может быть представлен как «часовой механизм», но огромных размеров и построенный с таким искусством и изощренностью, что если остановится колесо, при помощи которого в нём отмечаются секунды, то колесо, обозначающее минуты, будет вращаться и идти как ни в чём не бывало. Таким же образом засорения нескольких сосудов недостаточно для того, чтобы уничтожить или прекратить действие рычага всех движений, находящегося в сердце, которое является рабочей частью человеческой машины…

Ламетри указывает далее, что «человеческое тело — это заводящая сама себя машина, основное олицетворение беспрерывного движения». Вместе с тем он отмечал особенности этой машины и её сложность по сравнению с техническими устройствами, изучаемыми в механике. «Человека, — писал он, — можно считать весьма просвещённой машиной и настолько сложной машиной, что совершенно невозможно составить о ней ясную идею, а следовательно, дать точное определение» 14.

Солидаризируясь с Ламетри в понимании человека как машины, Гольбах акцентировал внимание на идеях универсальности механических законов, полагая возможным описать с их помощью человеческое общество. Для него человек есть продукт природы, подчиняющийся, с одной стороны, общим законам природы, а с другой — специальным законам. Специфической особенностью человека, по Гольбаху, является его стремление к самосохранению. При этом «человек сопротивляется разрушению, испытывает силу инерции, тяготеет к самому себе, притягивается сходными с ним объектами и отталкивается противоположными ему… Всё, что он делает и что происходит в нём, является следствием силы инерции, тяготения к самому себе, силы притяжения и отталкивания, стремления к самосохранению, одним словом, энергии, общей ему со всеми наблюдаемыми существами» 15.

Когда Ламетри и Гольбах используют понятия машины, силы, инерции, притяжения, отталкивания для характеристики человека, то здесь отчётливо прослеживается язык механической картины мира, которая длительное время определяла стратегию исследования природы, человека и общества. Эту стратегию можно довольно легко обнаружить и на более поздних этапах развития знания, например в социальных концепциях К.-А. Сен-Симона и Ш. Фурье. В работе «Труд о всемирном тяготении» Сен-Симон отмечал, что «прогресс человеческого ума дошел до того, что наиболее важные рассуждения о политике могут и должны быть непосредственно выведены из познаний, приобретённых в высших науках и в области физики». По мнению Сен-Симона, закон всемирного тяготения должен стать основой новой философии, которая в свою очередь может стать фундаментом новой политической науки. «Сила учёных Европы, — писал он, — объединённых в общую корпорацию и имеющих своей связью философию, основанную на идее тяготения, будет неизмерима». Он полагал, что идеи тяготения могут стать той основой, на базе которой может быть построена такая наука, как история, констатировал, что «пока ещё она представляет собой лишь собрание фактов, более или менее точно установленных, но в будущем должна стать наукой, а поскольку единственной наукой является классическая механика, то по своему строению история должна будет приблизиться к небесной механике» 16.

Сходные идеи можно найти в творчестве Ш. Фурье, который полагал, что принципы и подходы механики позволяют раскрыть законы социального движения. Он писал о существовании двух типов законов, которым подчиняется мир. Первый из них — это закон материального притяжения, приоритет открытия которого принадлежит Ньютону. Считая себя продолжателем ньютоновских идей и распространяя учение о тяготении на социальную жизнь, Фурье полагал, что можно говорить о втором типе законов, которым подчиняется социальное движение. Их Фурье обозначал как законы притяжения по страсти, которая в концепции Фурье занимала центральное место, выступая определяющим свойством природы человека 17.

По существу, здесь проводится своего рода аналогия между существованием тяготения природных тел и тяготением людей друг к другу И делается это во многом благодаря тому, что сам человек рассматривается как часть природы, хотя и имеющий некоторые отличия от других объектов природы, но всё же подчиняющийся общим принципам движения, сформулированным в механике. Идея общей механики природы и человеческих отношений во многом была инициирована механической картиной мира, которая доминировала в науке XVIII столетия и отчасти сохранила эти свои позиции в начале XIX века.

Влияние идей механической картины мира было столь значимым, что оно не только определяло стратегию развития научных знаний, но и оказывало воздействие на политическую практику. Идея мира как упорядоченной механической системы «явно довлела над умами творцов американской конституции, разработавших структуру государственной машины, все звенья которой должны были действовать с безотказностью и точностью часового механизма» 18.

Все это свидетельствует об особом статусе механической картины мира в культуре техногенных обществ эпохи раннего индустриализма. Механицизм был одним из важных истоков формирования соответствующих мировоззренческих структур, укоренившихся в культуре и влияющих на различные сферы функционирования общественного сознания. В свою очередь, распространение механистического мировоззрения подкрепляло убеждение в том, что принципы механической картины мира являются универсальным средством познания любых объектов.

Таким образом, можно обозначить важную особенность функционирования механической картины мира в качестве фундаментальной исследовательской программы науки XVIII века — синтез знаний, осуществляемый в её рамках, был связан с редукцией различного рода процессов и явлений к механическим. Правомерность этой редукции обосновывалась всей системой философско-мировоззренческих оснований науки, в которых идеи механицизма играли доминирующую роль.

Однако по мере экспансии механической картины мира во все новые предметные области наука всё чаще сталкивалась с необходимостью учитывать особенности этих областей, требующих новых, немеханических представлений. Накапливались факты, которые всё труднее было согласовывать с принципами механической картины мира.

К концу XVIII — началу XIX века стала складываться новая ситуация, приведшая к становлению дисциплинарного естествознания, в рамках которого научная картина мира приобретала особые характеристики и функциональные признаки. Это была революция в науке, связанная с перестройкой её оснований, появлением новых форм её институциональной организации и её новых функций в динамике социальной жизни.

Историю химии, биологии, технических и социальных наук этого исторического периода нельзя понять, если не учитывать «парадигмальных прививок», которые были связаны с экспансией механической картины мира на новые предметные области.

Проследим конкретные черты этого процесса. Как уже отмечалось, первые попытки применить представления и принципы механики в химии были связаны с программой Р. Бойля. Анализ её исторических судеб свидетельствует, что его стремление объяснить химические явления, исходя из представлений о движении «малых частиц материи» (корпускул), потребовало учёта специфики химических процессов. Под давлением накопленных фактов о химических взаимодействиях Бойль вынужден был модифицировать переносимые в химию идеи механической картины мира, в результате чего начала постепенно выкристаллизовываться специфическая для химии картина исследуемых процессов.

Первичные корпускулы, по Бойлю, должны рассматриваться в качестве элементов, замещающих прежние аристотелевские и алхимические элементы. Опираясь на факты, свидетельствовавшие о том, что изменение веществ позволяет как превращать одни вещества в другие, так и восстанавливать некоторые из них в первоначальном виде, Бойль заключил, что элементарные корпускулы, определяя свойства соответствующих сложных веществ, должны сохраняться в реакциях 19. Эти корпускулы выступают как качественно отличные друг от друга элементы, из которых образуются химические соединения и смеси.

Здесь с достаточной очевидностью прослеживается, что картина химических процессов, начертанная Бойлем, хотя и согласовывалась с механической картиной мира, но включала в себя и специфические черты. В зародышевой форме она содержала представление о химических элементах как о корпускулах, обладающих индивидуальностью, которые, будучи физическими частицами, вместе с тем являлись носителями свойств, позволяющих им образовывать в своих соединениях различные виды химических веществ 20.

В механике этими свойствами можно было пренебречь, рассматривая корпускулы только как массы, подверженные действию сил, но в химии свойства корпускул, делающие их химическими элементами, должны стать главным предметом изучения.

В механической картине мира (если взять её развитые формы) наряду с элементарными объектами — корпускулами — выделялись типы построенных из них тел — жидкие, твёрдые, газообразные. В картине же химической реальности, предложенной Бойлем, типология химических веществ не редуцировалась полностью к типологии физических объектов: наряду с различением жидких, твёрдых и газообразных (летучих) веществ выделялись два класса сложных химических объектов — соединения и смеси — и предполагалось, что внутри каждого из них существуют особые подклассы. Эти представления у Бойля были даны в неразвитой и во многом гипотетической форме, поскольку конкретные эмпирически фиксируемые признаки, по которым смеси отличались бы от соединений, ещё не были определены. «Еще длительное время сложный вопрос о том, что такое химическая смесь и что такое соединение, каковы их природа, свойства и отличия, порождал разнохарактерные и противоречивые суждения» 21.

Программа Бойля предлагала эту картину в качестве основания для экспериментальной и теоретической работы в химии. В основных чертах она предвосхитила последующие открытия Дальтона, хотя в XVII веке для её реализации ещё не было достаточно условий.

Во времена Бойля химия не располагала экспериментальными возможностями для определения того, какие вещества являются элементами, а какие таковыми не являются. Бойлем не было определено и понятие атомного веса, как такой характеристики, которая позволяла бы экспериментально отличить их друг от друга. Несмотря на то что программа Бойля не была реализована, для методологического анализа она служит хорошим примером, позволяющим установить особенности переноса принципов (в данном контексте -принципов механической картины мира) из одной науки в другую.


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 405; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.038 с.)
Главная | Случайная страница | Обратная связь