Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


ТРАНСПОРТ КИСЛОРОДА К ТКАНЯМ



Кислород к тканям вначале идет за счет конвекции, т. е. в виде потока крови, а на уровне капилляров — за счет процесса диффузии. Принято считать, что кислород покидает кровь только в капиллярах. Однако в 70-е годы появились факты, свидетельствующие о том, что кислород может входить в ткани через мелкие артерии и артериолы. Основной механизм доставки кислорода к клеткам—диффузия. Скорость ее, как и в альвеолярно-капиллярных взаимоотношениях, прямопропорциональна площади обменной диффузии, обратнопропор-циональна диффузионному расстоянию и прямопропорциональна градиенту напряжения. В миокарде, к примеру, на каждое мышечное волокно приходится 1 капилляр, а среднее расстояние между капиллярами составляет 25 мкм. Расстояние между капиллярами в коре головного мозга — 40 мкм, в скелетных мышцах — 80 мкм. Следовательно, в сердечной мышце создаются более благоприятные условия для экстракции кислорода, для более эф­фективного использования кровотока.

Для объяснения процессов диффузии кислорода в тканях было предложено множество моделей. До сих пор наиболее удачной считается модель, предложенная классиком физио­логии А. Кротом в 1918 г. — модель тканевого цилиндра. Согласно модели Крога участок ткани, снабжаемый одним капилляром, рассматривается как цилиндр, осью которого слу­жит капилляр. По Крогу, напряжение кислорода в участках ткани зависит от удаленности участка от капилляра — чем дальше удален участок, тем меньше в нем парциальное давле­ние кислорода. Есть участки, которые далеко расположены от капилляров («смертельный угол»), поэтому в них интенсивность обмена крайне низка. Недавно с помощью поляриме­трической методики (микроэлектроды, приспособленные для замера рО2) удалось показать, что содержание кислорода в тканях мозга — величина весьма варьирующая — от 5—10 мм рт. ст. до 90 мм рт. ст., и есть области, лежащие рядом с капилляром, где парциальное напряжение кислорода высокое, а есть области, удаленные от капилляра — с крайне низ­ким содержанием кислорода. Таким образом, стало ясно, что внутритканевая диффузия кислорода весьма ограничена.

КИСЛОРОД В КЛЕТКАХ

Чем интенсивнее потребление кислорода, тем меньше парциальное напряжение О2 в данной клетке. Обычно в наиболее активных клетках парциальное напряжение кислорода снижается до 1 мм рт. ст. и даже ниже, особенно возле потребителя кислорода — митохон­дрий. Когда напряжение кислорода снижается меньше 0, 1 мм рт. ст.—это становится несо­вместимым с жизнью и клетка погибает.

В некоторых тканях имеются специальные механизмы, приспособленные для аккумуля­ции кислорода про запас. Для этого используется миоглобин. В сердечной мышце 1 г ткани содержит 4 мг миоглобина. Каждый грамм миоглобииа связывает в среднем 1, 34 мл кисло­рода. Поэтому в небольших количествах сердечные клетки запасают кислород с помощью миоглобина. На 300 г сердца — 15 мл кислорода. Этих запасов хватает на 3—4 секунды непрерывной работы. Миокардиоциты левого желудочка сердца, когда они находятся в фазе систолы (0, 37 с при ритме 70 уд/мин), не получают крови. За этот период частичная ком-

Физиология человека


пенсация в кислороде происходит с помощью миоглобина. В диастолу запасы восстанавли­ваются. Таким образом, миоглобин «спасает» сердечную мышцу от гипоксии. Как извест­но, сердце в основном способно черпать энергию только из реакций, происходящих в аэ­робных условиях.

В скелетных мышцах миоглобин тоже используется как резерв. В начальные периоды физической активности, когда еще рабочая гиперемия не реализована, миоглобин отдает имеющийся у него запас кислорода.

ТРАНСПОРТ УГЛЕКИСЛОГО ГАЗА

Углекислый газ является «шлаком», подлежащим удалению, но этот «шлак» используется вторично, для пользы организма — участвует в регуляции кислотно-щелочного равновесия.

В крови углекислый газ находится в трех фракциях: физически растворенный, химичес­ки связанный в виде бикарбонатов и химически связанный с гемоглобином в виде карбге-моглобина. В венозной крови всего содержится 580 мл углекислого газа в 1 л крови. При этом на долю физически растворенного газа приходится 25 мл, на долю карбгемоглобина — примерно 45 мл, на долю бикарбонатов — 510 мл, причем — на долю бикарбонатов плазмы — около 340 мл (это соответствует 24 ммоль бикарбонатов), а на долю бикарбона­тов эритроцитов — около 170 мл. В артериальной крови содержание угольной кислоты меньше. В «Физиологии человека» (под ред. Р. Шмидта и Г. Тевса, 1996) приводятся такие данные о содержании различных фракций (в ммоль/л):

Таблица 10.

 

ФракцияСО, Артериальная кровь Венозная кровь Разница
Бикарбонаты      
плазмы 13, 2 14, 1 +0, 9 ммоль/л
Бикарбонаты      
эритроцитов 6, 4 7.1 +0, 7 ммоль/л
Карбгемоглобин 1, 1 1.3.. +0, 2 ммоль/л
Растворенный СО2 1, 2 -> 1, 4 +0, 2 ммоль/л

Естественно, что физически растворенный углекислый газ делает «всю погоду» — от его количества, а точнее, от его парциального напряжения зависит процесс связывания уг­лекислого газа кровью.

Когда кровь тканевого капилляра соприкасается с тканью, в которой парциальное на­пряжение газа составляет 60 мм рт, ст. и выше (а артериальная 40 мм рт. ст.), то в результа­те такого градиента углекислый газ устремляется в кровь, растворяясь в плазме. При повы­шении парциального напряжения в крови СО2 начинает соединяться с водой, образуя Н2СО3. Однако в плазме эта реакция идет очень медленно. Мембрана эритроцита хорошо проница­ема для углекислого газа, поэтому СО2 поступает в эритроцит. Здесь имеется фермент кар-боангидраза, который при высоком парциальном напряжении углекислого газа в 10000 раз увеличивает скорость образования угольной кислоты (когда парциальное напряжение уг­лекислого газа будет снижаться, как в капиллярах легких — этот же самый фермент, наобо­рот, катализирует противоположную реакцию — разложение угольной кислоты на воду и углекислый газ, чем способствует отдаче углекислого газа). Итак, в эритроцитах с боль­шой скоростью образуется угольная кислота. Она диссоциирует на Н+ и НСО3.

Основная масса свободных ионов водорода связывается дезоксигемоглобином, т. е. тем самым гемоглобином, который в капиллярах ткани освободился от кислорода. Дезоксиге-моглобин является более слабой кислотой, чем угольная, а тем более — чем оксигемогло-бин, и поэтому достаточно прочно связывает ионы водорода, не давая возможности закис-


ляться среде. Одновременно дезоксигемоглобин теряет сродство к ионам калия, поэтому эти ионы освобождаются и идут на образование КНСО3.

Учитывая, что в эритроците образуется большое количество анионов НСО3, часть этих анионов выходит из эритроцитов в плазму, где связывается с ионами натрия, образуя би­карбонат натрия. В обмен на вышедшие анионы НСО3~ внутрь эритроцитов входят анионы хлора. Это явление получило название хлоридного сдвига или сдвига Хамбургера. Кроме того, в эритроциты, богатые СО2, входят и молекулы воды (чтобы образовать Н2СО3). По* этому эритроциты, прошедшие ткань, содержат больше воды, чем эритроциты легочных капилляров.

Итак, пройдя через эритроцит, угольная кислота в конечном итоге превращается в би­карбонат плазмы (2/3) и бикарбонат эритроцитов (1/3) и в таком виде переносится к лег­ким. Одновременно в эритроците небольшая часть СО2 образует карбаминовую связь с ге­моглобином, в результате около 10% молекул СО2 переносятся внутри эритроцитов в виде карбгемоглобина. Из данных, приведенных в таблице, видно, что в артериальной крови тоже содержится определенная доля карбгемоглобина. Т. е., пройдя легочный капилляр, кровь не отдает полностью карбгемоглобин. В целом, в капиллярах легких при низком парциаль­ном давлении и напряжении углекислого газа происходит процесс, направленный на выде­ление «захваченного» в тканях углекислого газа. Он вдет по обратному пути. В его основе лежит уменьшение доли физически растворенной фракции углекислого газа.

Связывание углекислого газа зависит от напряжения этого газа в крови. Чем больше парциальное напряжение, тем выше степень связывания кровью углекислого газа. Эта за­висимость имеет нелинейный характер: Обнаружено важное явление — эффект Христиан-сена-Дугласа-Холдена, или эффект Холдена — химическое связывание углекислого газа зависит от состояния гемоглобина: если в крови много оксигемоглобина, то связывание углекислого газа снижено, и, наоборот, чем меньше оксигемоглобина, тем выше связыва­ние СО]. Дезоксигемоглобин хорошо связывает ионы Н+. Это создает условие для допол­нительного образования НСО3~. Все это способствует тому, что кровь, проходящая через тканевые капилляры, лучше отдает кислород и лучше принимает от клеток углекислый газ.

Дыхание и угольная кислота сами по себе играют важную роль в поддержании кислот­но-щелочного равновесия крови. Среди буферных систем крови особое место благодаря высокой лабильности занимает бикарбонатная буферная система (H2CO3/NaHCO3). На долю бикарбоната натрия как компонента буферных оснований приходится в среднем около 24 ммоль/л, а всего буферных оснований (+ белковый буфер) — 41—48 ммоль/л. Когда в крови появляется избыток водородных ионов, то количество бикарбоната натрия снижа­ется, но при этом возрастает концентрация угольной кислоты. В результате дыхание меня­ется — происходит углубление и учащение дыхания, это вызывает повышенное удаление угольной кислоты и ликвидацию гиперкапнии; кислотно-щелочное равновесие при этом остается на прежнем уровне —рН артериальной крови, в среднем сохраняется равным 7, 4. При увеличении в крови концентрации ОН~ наоборот, увеличивается содержание бикарбоната натрия, это вызывает снижение концентрации угольной кислоты, что приводит к уменьшению глубины и частоты дыхания, к задержке угольной кислоты и поэтому гипокапния ликвидирует­ся, а парциальное напряжение углекислого газа в крови возвращается к 40 мм рт. ст.

Для оценки состояния кислотно-щелочного равновесия по способу Аструпа (примене­ние аппарата типа «Микроаструп») обычно производят замер рН исследуемой крови при двух вариантах ее насыщения углекислым газом (рСО2=58 мм рт. ст. и 28 мм рт. ст.), а затем определяют истинное напряжение углекислого газа при реальном значении рН крови (например, рН=7, 35, это соответствует рСО2 у данного больного, равное 40 мм рт. ст.). Кроме того, метод Аструпа позволяет по диаграмме определить реальное значение буфер­ных оснований (ВВ), т. е. суммы белкового буфера и бикарбонатов, концентрацию стан­дартных бикарбонатов (бикарбоната натрия), а также отклонение значений ВВ от нормы, т. е. определить, имеется дефицит буферных оснований (BD) или избыток оснований (BE). Если в крови при рН, равном например, 7, 35 — напряжение углекислого газа равно 40 мм


рт. ст., и одновременно выявляется дефицит оснований, то это указывает на то, что имеет место так называемый метаболический ацидоз — накопление кислых, продуктов, идущих из тканей. Если при данном значении рН (например, 7, 35) увеличено парциальное напряже­ние углекислого газа (например, до 49 мм рт. ст.), а ВЕК), то это свидетельствует о наличии газового ацидоза, который возникает из-за недостаточности процесса газообмена. Таким образом, оценка кислотно-щелочного состояния по способу Аструпа позволяет, во-первых, оценить это состояние, а во-вторых, в случае его нарушения, указать причины, вызываю­щие дисбаланс.


Поделиться:



Последнее изменение этой страницы: 2017-05-04; Просмотров: 872; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.015 с.)
Главная | Случайная страница | Обратная связь