Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Основные фотометрические единицы (световой поток, сила света, освещенность, светимость и яркость)



Основные фотометрические единицы (световой поток, сила света, освещенность, светимость и яркость)

Фотометрия — раздел оптики, занимаю­щийся вопросами измерения интенсивно­сти света и его источников. В фотометрии используются следующие величины:

1) энергетические — характеризуют энергетические параметры оптического из­лучения безотносительно к его действию на приемники излучения;

2) световые — характеризуют физио­логические действия света и оцениваются по воздействию на глаз (исходят из так называемой средней чувствительности глаза) или другие приемники излучения.

Энергетический поток - энергия, переносимая волной за время 1 с; единица - ватт, Вт.

Энергетическая освещенность - отношение энергетического потока Δ ФЭ к площади облучаемой им поверхности Δ Q:

единица - ватт на квадратный метр, Вт/м2.

Энергетическая сила света - отношение энергетического потока Δ ФЭ к

телесному углу Δ Ω, в котором распределено это излучение:

;

единица – ватт на стерадиан, Вт/ср.

Энергетическая светимость – отношение энергетического потока Δ Фэ к площади излучающей поверхности источника Δ QИ:

;

единица – Вт/м2.

Энергетическая яркость - отношение энергетической силы света Δ IЭ, к площади проекции Δ QП излучающей поверхности источника на плоскость, перпендикулярную направлению наблюдения:

единица - Вт/(м2 ср).

Световой поток - энергия, оцениваемая по зрительному воздействию на глаз человека; единица - люмен, лм (1 лм равен световому потоку монохроматического излучения с длиной волны 555 нм, энергетический поток которого равен 1/683 Вт).

Освещенность - отношение светового потока Δ Ф к площади Δ Ω облучаемой им поверхности:

единица - люкс, лк.

Сила света - отношение светового потока Δ Ф к телесному углу Δ Ω:

Единица – кандела, кд (одна из основных единиц в СИ). Кандела равна силе света в заданном направлении от источника излучения частотой 540∙ 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Светимость – отношение светового потока Δ Ф к площади излучаемой поверхности Δ QИ источника:

;

Единица лм/м2.

Яркость – отношение силы света Δ I к площади проекции Δ QП поверхности источника на плоскость, перпендикулярную направлению наблюдения:

;

Единица – кд/м2.

Освещенность ЕТ, создаваемая точечным источником, рассчитывается по формуле:

,

где I – сила света, r – расстояние между источником и облучаемой им поверхностью, φ – угол между нормалью к поверхности и направлением распространения волн.

Что такое луч света?

Светово́ й луч в геометрической оптике — линия, вдоль которой переносится световая энергия. Менее чётко, но более наглядно, можно назвать световым лучом пучок света малого поперечного размера.

Понятие светового луча является краеугольным приближением геометрической оптики. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света. В силу того, что свет представляет собой волновое явление, имеет место дифракция, и в результате узкий пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение.

Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

 

Закон независимости действия световых пучков.

Световой поток можно разбить на отдельные световые пучки, выделяя их,

например, при помощи диафрагм. Действие этих выделенных световых пучков

оказывается независимым, т.е. эффект, производимый отдельным пучком, не

зависит от того, действуют ли одновременно другие пучки или они устранены.

 

 

Закон преломления света.

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света. Если вторая среда прозрачна, то часть света при определенных условиях может пройти через границу сред, также меняя при этом, как правило, направление своего распространения. Это явление называется преломлением света. Вследствие преломления наблюдается кажущееся изменение размеров, формы и расположения предметов. В этом нас могут убедить простые наблюдения. Установим наклонно карандаш в стакане с водой. Часть карандаша, находящаяся в воде, кажется сдвинутой в сторону и увеличенной в диаметре.

Подобные явления объясняются изменением напрвления лучей на границе двух сред. Луч, распространяющийся в первой среде и достигающий границы, называетсяпадающим лучом, называемыйa. Он составляет с перпендикуляром к границе, проведенным через точку падения, угол углом падения. Луч, прошедший во вторую среду, называютпреломленным лучом, который этот луч образует с тем же перпендикуляром, называютb. Угол углом преломления.

Закон преломления, установленный экспериментально в XVII веке, формулируется следующим образом: Падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления есть величина постоянная для двух данных сред.

Sin a / sin b = n

Закон отражения света.

Закон отражения света определяет взаимное расположение падающего луча, отраженного луча и перпендикуляра к поверхности, восстановленного в точке падения.

Очевидно, что этот закон будет выполняться и в том случае, если свет будет распространяться в обратном направлении.a равен углу падения gЭтот закон справедлив для волн любой природы и формулируется так: падающий луч, отраженный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; угол отражения Обратимость хода световых лучей является их важным свойством.

Т.е Луч падающий, отраженный и перпендикуляр в точке падения лежат в одной плоскости. Угол падения равен углу отражения.

Что такое интерференция?

Явление интерференции свидетельствует о том, что свет — это волна.

Интерференцией световых волн называется сложение двух когерентных волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства.

Интерференция света - это явление наложения когерентных световых волн, в результате которого происходит перераспределение световой энергии в пространстве.

В точках пространства, куда когерентные волны приходят в фазе, они усиливают друг друга; в точках, куда они попадают в противофазе, происходит ослабление света. На экране наблюдается характерная интерференционная картина в виде чередования темных и светлых полос - максимумов и минимумов освещенности, если падающий свет монохроматический. Заметим, что сказанное имеет место лишь тогда, когда направления колебаний светового вектора обеих волн совпадают.


В случае максимума интенсивности интерференционной картины в оптической разности хода двух когерентных волн укладывается целое число длин волн (в вакууме)

Принцип Гюйгенса – Френеля.

Согласно принципу Гюйгенса-Френеля световая волна, возбуждаемая каким-либо источником S может быть представлена как результат суперпозиции когерентных вторичных волн. Каждый элемент волновой поверхности S (рис.) служит источником вторичной сферической волны, амплитуда которой пропорциональна величине элемента dS.


Амплитуда этой вторичной волны убывает с расстоянием  r от источника вторичной волны до точки наблюдения по закону 1/r. Следовательно, от каждого участка dS волновой поверхности в точку наблюдения Р приходит элементарное колебание:

 


где ( ω t + α 0 ) − фаза колебания в месте расположения волновой поверхности S, k − волновое число, r − расстояние от элемента поверхности dS до точки P, в которую приходит колебание. Множитель а0 определяется амплитудой светового колебания в месте наложения элемента dS. Коэффициент K зависит от угла φ между нормалью к площадке dS и направлением на точку Р. При φ = 0 этот коэффициент максимален, а при φ /2 он равен нулю.
Результирующее колебание в точке  Р представляет собой суперпозицию колебаний (1), взятых для всей поверхности S:

 


Эта формула является аналитическим выражением принципа Гюйгенса-Френеля. 

Виды поляризованного света.

Под поляризацией света понимают пространственное соотношение между направлением распространения света и направлением колебания электрического вектора. Световая волна образуется в результате наложения большого количества волновых цугов, испускаемых отдельными возбужденными атомами источника света. Направления колебаний векторов и у отдельных цугов – самые разнообразные. Поэтому в результирующей световой волне направление колебаний суммарного светового вектора хаотически изменяется. Такой свет называется естественным. Свет, у которого направления колебаний векторов и упорядочены, называется поляризованным.

 
 


Свет называется линейно поляризованным (плоско поляризованным), если колебания электрического (светового) вектора происходят вдоль одного направления.

Плоскость, проходящая через вектор и направление луча, называется плоскостью поляризации.

Свет, состоящий из естественной и поляризованной составляющих, называется частично поляризованным.

При сложении двух световых волн одинаковой частоты, линейно поляризованных во взаимно перпендикулярных плоскостях, результирующий вектор может поворачиваться по мере распространения волны (происходит сложение взаимно перпендикулярных колебаний одинаковой частоты). Свет, у которого конец вектора , вращаясь вдоль направления луча, описывает эллипс называется эллиптически поляризованным, если – окружность, то поляризованным по кругу.

Закон Малюса.

 

Если два поляроида поставлены на пути лучей так, что их плоскости пропускания параллельны друг другу, то колебания электромагнитного поля световой волны, пропущенные первым из них (поляризатором Р), будут пропущены и вторым (анализатором А). Наоборот, при взаимно перпендикулярном расположении плоскостей пропускания скрещенных поляроидов колебания, пропущенные одним из них, будут задержаны вторым. Таким образом пропускание света парой поляроидов зависит от угла между их плоскостями пропускания (рис. 5 а).

Из рисунка 5 б) видно, что амплитудные значения напряженности светового вектора связаны между собой:

ЕА = Ер cos α. (1)

А так как интенсивность света I ~ E2, то

I = I0 • cos2 α , (2)

где Iо - интенсивность поляризованного света, падающего на анализатор, I - интенсивность поляризованного света, прошедшего через анализатор.

Формула (2) является выражением закона Малюса: интенсивность света I, выходящего из анализатора, пропорциональна квадрату косинуса угла α между направлением плоскостей пропускания вектора Е поляризатора и анализатора.

Для прозрачных поляроидов поляризатор Р пропускает 50% интенсивности естественного света, тогда закон Малюса можно также записать для естественного света

. (3)

Закон Кирхгофа.

Закон Кирхгофа. Между спектральной плотностью энергетической светимости и спектральной поглощательной способностью существует определенная связь, установленная Кирхгофом и сформулированная им следующим образом: отношение спектральной плотности энергетической светимости к спектральной поглощательной способности не зависит от природы тела и является для всех тел одной и той же функцией частоты и температуры: . Это равенство называется законом Кирхгофа. Спектральная плотность энергетической светимости и спектральная поглощательная способность могут меняться от тела к телу, но их отношение одинаково для всех тел. Если тело сильнее поглощает какие-либо лучи, то оно будет эти лучи сильнее и испускать (не отражать, а испускать).

Закон Кирхгофа справедлив для всех тел, в том числе и для абсолютно черного тела, для которого . Следовательно, для такого тела . Таким образом, универсальная функция Кирхгофа есть не что иное, как спектральная плотность энергетической светимости абсолютно черного тела.

Закон Стефана-Больцмана.

Закон Стефана — Больцмана — закон излучения абсолютно чёрного тела. Определяет зависимостьмощности излучения абсолютно чёрного тела от его температуры. Формулировка закона:

Мощность излучения абсолютно чёрного тела прямопропорциональна площади поверхности и четвёртой степенитемпературы тела: P = Sε σ T4,

где ε - степень черноты (для всех веществ ε < 1, для абсолютно черного тела ε = 1). При помощи законаПланка для излучения, постоянную σ можно определелить как

где — постоянная Планка, k — постоянная Больцмана, c — скорость света.

Численное значение Дж · с-1 · м-2 · К-4.

Закон открыт независимо Й. Стефаном и Л. Больцманом в предположении пропорциональности плотностиэнергии излучения и его давления p = ρ / 3. В 1880 г. подтверждён Лео Гретцем.

 


Важно отметить, что закон говорит только об общей излучаемой энергии. Распределение энергии поспектру излучения описывается формулой Планка, в соответствии с которой в спектре имеетсяединственный максимум, положение которого определяется законом Вина.

Применение закона к расчёту эффективной температуры поверхности Земли даёт оценочное значение, равное 249 К или − 24 °C.

Законы Вина.

В 1893 г. немецкий физик В.Вин теоретически рассмотрел термодинамический процесс сжатия излучения, заключенного в полости с идеально зеркальными стенками, и пришел к выводу, что испускательная способность абсолютно черного тела прямо пропорциональна кубу частоты и является функцией отношения ν /T:

, (16.12)

где α – постоянная величина, F - некоторая функция, конкретный вид которой термодинамическими методами установить невозможно.

Переходя в этой формуле Вина от частоты к длине волны, получим:

. (16.13)

Как видно, в выражение для излучательной способности температура входит лишь в виде произведенияλ T. Уже это обстоятельство позволило предсказать некоторые особенности функции . В частности, эта функция достигает максимума при определенной длине волныλ m, которая при изменении температуры тела изменяется так, чтобы выполнялось условие: λ mT = const.

Таким образом, В. Вин сформулировал закон теплового излучения, согласно которому длина волны λ m, на которую приходится максимум излучательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре. Этот закон можно записать в виде

, (16.14)

где - постоянная Вина.

Закон Вина называют законом смещения, подчеркивая тем самым, что при повышении температуры абсолютно черного тела положение максимума его излучательной способности смещается в область коротких длин волн. Результаты экспериментов, приведенные на рис. 16.4, подтверждают этот вывод не только качественно, но и количественно, строго в соответствии с формулой (16.14).

С ростом температуры любого тела длина волны, вблизи которой тело излучает больше всего энергии, также смещается в сторону коротких длин волн. Это смещение, однако, уже не описывается простой формулой (16.14), которую для излучения реальных тел можно использовать только в качестве оценочной, т.е. формула (16.14) остается в силе только при больших частотах и низких температурах.

Кроме закона смещения (16.14) Вин получил выражение для максимального значения излучательной способности АЧТ. Эту зависимость называют вторым законом Вина, согласно которому максимальное значение испускательной способности АЧТпрямо пропорционально абсолютной температуре в пятой степени:

, (16.15)

где . Однако, получить теоретическое выражение для универсальной функции Кирхгофа, хорошо описывающее экспериментальные результаты во всем диапазоне длин волн излучения тела, Вину не удалось.

Формула Бальмера.

Спектры излучения изолированных атомов, например, атомов разреженного одноатомного газа или паров металла, состоят из отдельных спектральных линий и носят название линейчатых. Относительная простота линейчатых спектров объясняется тем, что электроны, входящие в состав таких атомов, находятся под действием только внутриатомных сил и практически не испытывают возмущающего действия со стороны окружающих удаленных атомов. Изучение линейчатых спектров показывает, что в расположении линий, образующих спектр, наблюдаются определённые закономерности: линии располагаются не беспорядочно, а группируются сериями. Впервые это было обнаружено Бальмером (1885 г.) для атома водорода. Сериальные закономерности в атомных спектрах присущи не только атому водорода, но и другим атомам и свидетельствуют о проявлении квантовых свойств излучающих атомных систем. Для атома водорода эти закономерности могут быть выражены с помощью соотношения (обобщенная формула Бальмера)

Сериальные формулы свидетельствуют о существовании физических закономерностей в спектре атома водорода, объяснить которые с помощью классической физики невозможно.

 

Постулаты Бора.

Основу теории Бора составили три постулата и классическая механика Ньютона. На основании того, что атомные спектры представляют собой набор отдельных линий, соответствующих дискретному набору частот , , ...., Бор сделал вывод, что атомы не могут обладать энергией, способной изменяться непрерывно, и сформулировал следующие постулаты:

1. Постулат стационарных состояний. В атоме существуют стационарные (не изменяющиеся со временем) состояния, характеризующиеся определенными дискретными значениями энергии, в которых он не излучает и не поглощает энергию.

2. Постулат квантования орбит. В стационарных состояниях атома электрон может двигаться лишь по таким орбитам, для которых момент импульса электрона имеет дискретные значения, удовлетворяющие условию:

где n = 1, 2, 3 …, скорость электрона поn-ой орбите радиуса , – постоянная Планка.

3. Постулат частот. При переходе электрона из одного стационарного состояния в другое стационарное состояние излучается (поглощается) один фотон с энергией, равной разности энергий соответствующих стационарных состояний и :

При происходит излучение энергии, при - поглощение энергии. Набор возможных квантовых переходов и определяет линейчатый спектр атома:

Строение ядра.

 

Строение атомного ядра.

Атом – это мельчайшая частица химического элемента, сохраняющая все его свойства. По своей структуре атом представляет сложную систему, состоящую из находящегося в центре атома положительно заряженного ядра очень малого размера (10-13 см) и отрицательно заряженных электронов, вращающихся вокруг ядра на различных орбитах. Отрицательный заряд электронов равен положительному заряду ядра, при этом в целом оказывается электрически нейтральным.

Атомные ядра состоят из нуклонов – ядерных протонов (Z – число протонов) и ядерных нейтронов (N – число нейтронов). « Ядерные» протоны и нейтроны отличаются от частиц в свободном состоянии. Например, свободный нейтрон, в отличие от связанного в ядре, нестабилен и превращается в протон и электрон.

Протон – элементарная частица любого атома, он имеет положительный заряд, равный заряду электрона. Число электронов в оболочке атома определяется числом протонов в ядре.

Нейтрон – другой вид ядерных частиц всех элементов. Его нет лишь в ядре легкого водорода, состоящего из одного протона. Он не имеет заряда, электрически нейтрален. В атомном ядре нейтроны являются стабильными, а в свободном состоянии они неустойчивы. Число нейтронов в ядрах атомов одного и того же элемента может колебаться, поэтому число нейтронов в ядре не характеризует элемент.

Нуклоны (протоны + нейтроны) удерживаются внутри атомного ядра ядерными силами притяжения. Ядерные силы в 100 раз сильнее электромагнитных сил и поэтому удерживает внутри ядра одноименно заряженные протоны. Ядерные силы проявляются только на очень малых расстояниях (10-13см), они составляют потенциальную энергию связи ядра, которая при некоторых превращениях частично освобождается, переходит в кинетическую энергию.

Основные фотометрические единицы (световой поток, сила света, освещенность, светимость и яркость)

Фотометрия — раздел оптики, занимаю­щийся вопросами измерения интенсивно­сти света и его источников. В фотометрии используются следующие величины:

1) энергетические — характеризуют энергетические параметры оптического из­лучения безотносительно к его действию на приемники излучения;

2) световые — характеризуют физио­логические действия света и оцениваются по воздействию на глаз (исходят из так называемой средней чувствительности глаза) или другие приемники излучения.

Энергетический поток - энергия, переносимая волной за время 1 с; единица - ватт, Вт.

Энергетическая освещенность - отношение энергетического потока Δ ФЭ к площади облучаемой им поверхности Δ Q:

единица - ватт на квадратный метр, Вт/м2.

Энергетическая сила света - отношение энергетического потока Δ ФЭ к

телесному углу Δ Ω, в котором распределено это излучение:

;

единица – ватт на стерадиан, Вт/ср.

Энергетическая светимость – отношение энергетического потока Δ Фэ к площади излучающей поверхности источника Δ QИ:

;

единица – Вт/м2.

Энергетическая яркость - отношение энергетической силы света Δ IЭ, к площади проекции Δ QП излучающей поверхности источника на плоскость, перпендикулярную направлению наблюдения:

единица - Вт/(м2 ср).

Световой поток - энергия, оцениваемая по зрительному воздействию на глаз человека; единица - люмен, лм (1 лм равен световому потоку монохроматического излучения с длиной волны 555 нм, энергетический поток которого равен 1/683 Вт).

Освещенность - отношение светового потока Δ Ф к площади Δ Ω облучаемой им поверхности:

единица - люкс, лк.

Сила света - отношение светового потока Δ Ф к телесному углу Δ Ω:

Единица – кандела, кд (одна из основных единиц в СИ). Кандела равна силе света в заданном направлении от источника излучения частотой 540∙ 1012 Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

Светимость – отношение светового потока Δ Ф к площади излучаемой поверхности Δ QИ источника:

;

Единица лм/м2.

Яркость – отношение силы света Δ I к площади проекции Δ QП поверхности источника на плоскость, перпендикулярную направлению наблюдения:

;

Единица – кд/м2.

Освещенность ЕТ, создаваемая точечным источником, рассчитывается по формуле:

,

где I – сила света, r – расстояние между источником и облучаемой им поверхностью, φ – угол между нормалью к поверхности и направлением распространения волн.

Что такое луч света?

Светово́ й луч в геометрической оптике — линия, вдоль которой переносится световая энергия. Менее чётко, но более наглядно, можно назвать световым лучом пучок света малого поперечного размера.

Понятие светового луча является краеугольным приближением геометрической оптики. В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света. В силу того, что свет представляет собой волновое явление, имеет место дифракция, и в результате узкий пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение.

Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

 


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 2003; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.086 с.)
Главная | Случайная страница | Обратная связь