Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Что такое оптическая длина пути, оптическая разность хода?



1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

s=nd.

2. Разность фаз двух когерентных волн от одного источника, одна из которых проходит длину пути в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :

где , , λ – длина волны света в вакууме.

3. Если оптические длины пути двух лучей равны, , то такие пути называются таутохронными (не вносящими разности фаз). В оптических системах, дающих стигматические изображения источника света, условию таутохронности удовлетворяют все пути лучей, выходящих из одной и той же точки источника и собирающихся в соответствующей ей точке изображения.

4. Величина называется оптической разностью хода двух лучей. Разность хода связана с разностью фаз :

.

Если два световых луча имеют общие начальную и конечные точки, то разность оптических длин путей таких лучей называют оптической разностью хода

 

Условия максимумов и минимумом при интерференции.

Если колебания вибраторов А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.

Условия максимума:

Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн)

Δ d = kλ,, где k = 0, 1, 2, ..., то в точке наложения этих волн образуется интерференционный максимум.

Условие максимума:

Амплитуда результирующего колебания А = 2x 0.

Условие минимума:

Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от вибраторов А и Б придут в точку С в противофазе и погасят друг друга: амплитуда результирующего колебания А = 0.

Условие минимума:

Если Δ d не равно целому числу полуволн, то 0 < А < 2х 0.

Явление дефракции света и условия ее наблюдения.

Изначально явление дифракции трактовалось как огибание волной препятствия, то есть проникновение волны в область геометрической тени. С точки зрения современной науки определение дифракции как огибания светом препятствия признается недостаточным (слишком узким) и не вполне адекватным. Так, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн (в случае учёта их пространственного ограничения) в неоднородных средах.

Дифракция волн может проявляться:

в преобразовании пространственной структуры волн. В одних случаях такое преобразование можно рассматривать как «огибание» волнами препятствий, в других случаях — как расширение угла распространения волновых пучков или их отклонение в определённом направлении;

в разложении волн по их частотному спектру;

в преобразовании поляризации волн;

в изменении фазовой структуры волн.

Наиболее хорошо изучена дифракция электромагнитных (в частности, оптических) и акустических волн, а также гравитационно-капиллярных волн (волны на поверхности жидкости).

Одним из важных частных случаев дифракции является дифракция сферической волны на каких-нибудь препятствиях (например, на оправе объектива). Такая дифракция называется дифракцией Френеля.

Принцип Гюйгенса – Френеля.

Согласно принципу Гюйгенса-Френеля световая волна, возбуждаемая каким-либо источником S может быть представлена как результат суперпозиции когерентных вторичных волн. Каждый элемент волновой поверхности S (рис.) служит источником вторичной сферической волны, амплитуда которой пропорциональна величине элемента dS.


Амплитуда этой вторичной волны убывает с расстоянием  r от источника вторичной волны до точки наблюдения по закону 1/r. Следовательно, от каждого участка dS волновой поверхности в точку наблюдения Р приходит элементарное колебание:

 


где ( ω t + α 0 ) − фаза колебания в месте расположения волновой поверхности S, k − волновое число, r − расстояние от элемента поверхности dS до точки P, в которую приходит колебание. Множитель а0 определяется амплитудой светового колебания в месте наложения элемента dS. Коэффициент K зависит от угла φ между нормалью к площадке dS и направлением на точку Р. При φ = 0 этот коэффициент максимален, а при φ /2 он равен нулю.
Результирующее колебание в точке  Р представляет собой суперпозицию колебаний (1), взятых для всей поверхности S:

 


Эта формула является аналитическим выражением принципа Гюйгенса-Френеля. 


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 6846; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.014 с.)
Главная | Случайная страница | Обратная связь