Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет прочности нормальных сечений на основе деформационной модели



8.25 При расчете огнестойкости по потере несущей способности от огневого воздействия усилия и деформации в сечении, нормальном к продольной оси элемента, определяют на основе деформационной модели, используя уравнения равновесия внешних сил и внутренних усилий в сечении элемента с учетом изменения свойств бетона и арматуры от воздействия температуры.

8.26 При этом используются следующие положения:

- распределение относительных деформаций бетона и арматуры по высоте сечения элемента принимают по линейному закону;

- связь между осевыми сжимающими напряжениями бетона σ b и относительными его деформациями ε b допускается принимать в виде двухлинейной диаграммы (рис. 5.2), согласно которой напряжения σ b определяют по п. 5.8;

- сопротивление бетона растянутой зоны не учитывается;

- связь между напряжениями арматуры σ s и относительными ее деформациями ε s допускается принимать в виде двухлинейной диаграммы (рис. 5.3), согласно которой напряжения σ s принимают по п. 5.11.

Переход от эпюры напряжений в бетоне к обобщенным внутренним усилиям рекомендуется осуществлять с помощью процедуры численного интегрирования по нормальному сечению. Для этого нормальное сечение при внецентренном сжатии, растяжении и изгибе в плоскости оси симметрии условно разделяют на малые участки: при одностороннем огневом воздействии в плитах - только по высоте сечения; при трехстороннем огневом воздействии в балках и ригелях - по высоте и ширине сечения, при четырехстороннем огневом воздействии в колоннах - на полые прямоугольники с одинаковой температурой нагрева.

8.27 Расчет на основе нелинейной деформационной модели производят с помощью компьютерных программ, которые рекомендуется составлять на основе следующего алгоритма.

8.27.1 Для принятого по проекту предела огнестойкости R железобетонного элемента решается теплотехническая задача, по которой от стандартного пожара, длительностью, соответствующей требуемому пределу огнестойкости R, находят температуру нагрева j-го участка бетона и i-го стержня арматуры в поперечном сечении элемента.

8.27.2 По температуре каждого участка сжатой зоны бетона по табл. 5.1 устанавливают значения коэффициентов γ bt и β b. Зная класс бетона по прочности на сжатие, по формуле (5.1) находят сопротивление бетона сжатию, а по формуле (5.3) - значения модуля упругости бетона. Для менее нагретого сжатого волокна бетона по табл. 5.4 устанавливают базовые деформационные точки диаграммы состояния бетона и строят диаграмму сжатого бетона.

8.27.3 Зная класс арматуры, находят сопротивление арматуры растяжению по формуле (5.8), сжатию - по формуле (5.9) и модуль упругости - по формуле (5.10). В этих формулах значения коэффициентов γ st и β s принимают по табл. 5.5, в зависимости от температуры растянутой и сжатой арматуры. Предельные значения относительных деформаций арматуры принимают по п. 5.11 и строят диаграммы деформирования растянутой и сжатой арматуры.

8.27.4 В общем случае при расчете нормальных сечений внецентренно сжатых и растянутых железобетонных элементов используют следующие зависимости:

уравнения равновесия внутренних и внешних усилий:

0588S10-01164

(8.41)

0588S10-01164

(8.42)

уравнения, определяющие распределения деформаций по сечению элемента:

0588S10-01164

(8.43)

0588S10-01164

(8.44)

зависимости, связывающие напряжения и относительные деформации бетона и арматуры:

σ bi = Ebtivbiε bi; (8.45)

σ sj = Estjvsjε sj, (8.46)

где в уравнениях (8.41) - (8.46):

Мх, Мy - изгибающие моменты от внешних воздействий относительно выбранных осей х и у в пределах поперечного сечения элемента, определяемые по формулам

(8.47)

Mxd, Myd - изгибающие моменты в соответствующих плоскостях от внешних усилий, определяемые из статического расчета;

N - продольная сила от внешних усилий;

ех, еy - расстояния от точки приложения силы N до соответствующих осей;

Аbi, Zbxi, Zbyi, σ bi - площадь, координаты центра тяжести i-го участка бетона и напряжение на уровне его центра тяжести;

Аsj, Zsxj, Zsyj, σ sj - площадь, координаты центра тяжести j-го стержня арматуры и напряжения в нем;

ε 0 - относительная деформация волокна, расположенного на пересечении выбранных осей;

- кривизна продольной оси в рассматриваемом поперечном сечении элемента в плоскостях действия изгибающих моментов Мх и Мy;

Ebti, Estj - модули упругости бетона i-го участка и арматуры j-го стержня;

vbi, vsj - коэффициенты упругости бетона i-го участка и арматуры j-го стержня.

Коэффициенты vbi и vsj принимают по соответствующим диаграммам состояния бетона и арматуры, указанным в пп. 5.8 и 5.11.

8.27.5 Значения коэффициентов vbi и vsj определяют как соотношение значений напряжений и деформаций для рассматриваемых точек соответствующих диаграмм состояния бетона и арматуры, деленное на приведенный модуль упругости бетона Eb, red, t, i и на модуль деформации арматуры Еstj

(8.48)

(8.49)

где Eb, red, t, i - приведенный модуль деформации бетона, определяемый по формуле (5.7), в которой β b принимают по табл. 5.1 в зависимости от температуры в центре тяжести i-го участка бетона.

8.27.6 Расчет нормальных сечений железобетонных элементов по прочности производят из условий:

относительная деформация наиболее сжатого волокна бетона в нормальном сечении от действия внешних усилий ε b, тах ε b, ult. Предельное значение относительной деформации бетона при сжатии ε b, ult принимают при двухзначной эпюре деформаций бетона, равной ε b2 (табл. 5.4); при деформации одного знака, в зависимости от отношений деформаций бетона на противоположных гранях сечения элемента ε 1 и ε 2:

0588S10-01164

(8.50)

относительная деформация наиболее растянутого стержня арматуры в нормальном сечении элемента от внешних усилий ε s, тах ε s, ult. Предельное значение относительной деформации удлинения принимают равной ε s2 (п. 5.11).

8.27.7 В железобетонном элементе при действии момента и продольной силы в плоскости симметрии поперечного сечения и расположения оси в этой плоскости My = 0, D12 = D22 = D23 = 0, деформации бетона ε b, тах и арматуры ε s, тах определяют из решения системы уравнений (8.51) и (8.52) с использованием уравнений (8.43) и (8.44)

(8.51)

(8.52)

В уравнениях (8.51) и (8.52) жесткостные характеристики (матрицы жесткости) определяют по формулам:

изгибная жесткость

0588S10-01164

(8.53)

изгибно-осевая жесткость

0588S10-01164

(8.54)

осевая жесткость

0588S10-01164

(8.55)

Для изгибаемых элементов в уравнениях (8.42), (8.47), (8.52) N = 0.

8.27.8 Если внутренние усилия в железобетонном элементе оказываются равными или несколько больше внешних усилий от нормативной нагрузки до пожара, то требуемый предел огнестойкости по потере несущей способности R для этого элемента обеспечен.


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 57; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.018 с.)
Главная | Случайная страница | Обратная связь