Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Расчет предела огнестойкости по целостности



9.1 Предел огнестойкости по целостности - по образованию сквозных отверстий или сквозных трещин во влажном бетоне при одностороннем нагреве - наступает через 5 - 20 мин после начала пожара и сопровождается отколами бетона от нагреваемой поверхности.

В тонкостенных железобетонных конструкциях толщиной 40 - 200 мм это приводит к образованию сквозных отверстий и трещин, например, в стенке двутавровой балки или в плите перекрытия. В конструкциях толщиной более 200 мм это приводит к отколам кусков бетона толщиной до 50 - 100 мм, что уменьшает поперечное сечение элемента.

Причиной хрупкого разрушения бетона при пожаре является образование трещин в структуре бетона и их переход в неравновесное спонтанное развитие под воздействием внешней нагрузки и неравномерного нагрева и фильтрации пара по толщине сечения элемента.

9.2 Во избежание хрупкого разрушения в бетоне напряжения сжатия не должны превышать значений, указанных на рис. 9.1, независимо от вида бетона.

0588S10-01164

Рисунок 9.1 - Зависимость хрупкого разрушения бетона от напряжений сжатия в бетоне и толщины элемента

9.3 В железобетонных конструкциях из тяжелого бетона с силикатным заполнителем и влажностью более 3, 5 %, с карбонатным заполнителем и влажностью более 4 % и из легкого конструкционного керамзитобетона с влажностью более 5 % и плотностью более 1200 кг/м3 возможно хрупкое разрушение бетона при пожаре.

Возможность хрупкого разрушения бетона при пожаре по В.В. Жукову оценивается значением критерия хрупкого разрушения F. Если F ≤ 4, то хрупкого разрушения бетона не будет. Если F > 4, то бетон будет хрупко разрушаться, и предел огнестойкости по целостности не будет превышать Е15.

Критерий хрупкого разрушения бетона следует определять по формуле:

F = aα btEbtρ Wэ/K11λ n, (9.1)

где а - коэффициент пропорциональности, равный 1, 16 · 10-2 Вт · м3/2/кг;

α bt - коэффициент температурной деформации бетона, принимают по табл. 5.2 для температуры бетона 250 °С;

Ebt - модуль упругости бетона, МН/м2 (1 МН/м2 = 1 МПа = 10 кгс/см2), определяют по формуле (5.3), в которой коэффициент β b принимают по табл. 5.1 при нагреве бетона до 250 °С;

ρ - плотность бетона в сухом состоянии, кг/м3, принимают равной плотности бетона в естественном состоянии за вычетом испаряющейся воды в количестве 150 кг/м3;

K11 - коэффициент псевдоинтенсивности напряжений бетона, МН · м3/2, принимают по табл. 9.1 в зависимости от вида и количества крупного заполнителя;

λ - коэффициент теплопроводности бетона, Вт/(м · °С) определяют по формулам (6.2) - (6.4) для температуры бетона 200 °С;

Wэ - объемная эксплуатационная влажность бетона, м33;

n - общая пористость бетона.

Общую пористость бетона с плотными заполнителями n определяют по формулам: для бетона с В/Ц ≥ 0, 4:

n = Ц(В/Ц - 0, 2)10-3; (9.2)

для бетона с В/Ц < 0, 4:

n = (В/Ц · 8 · 10-4)Ц. (9.3)

Общая пористость бетона с пористым заполнителем n1 увеличивается на пористость заполнителя n3, умноженную на относительное объемное содержание крупного пористого заполнителя в бетоне V3:

n1 = n + V3n3. (9.4)

Объемная эксплуатационная влажность бетона Wэ33) равна:

Wэ = Wbρ 10-3, (9.5)

где Wb - равновесная влажность бетона по массе, кг/кг.

Таблица 9.1

Вид заполнителей Значения K11 (МН · м3/2) в зависимости от содержания крупного заполнителя в бетоне, %
Природный песок и силикатный щебень 0, 47 0, 53
Природный песок и карбонатный щебень 0, 39 0, 44
Природный песок и керамзитовый гравий 0, 31 0, 32
Примечания 1. При крупности заполнителя более 10 мм значения K11 умножают на 1, 14. 2. Для бетона, подвергнутого тепловлажностной обработке, значения K11 делят на 1, 4. 3. Значения K11 для расхода крупного заполнителя < 50 и > 35 % принимаются по линейной интерполяции.

9.4 Максимальная равновесная влажность бетона в железобетонных конструкциях может сохраняться в первый месяц влажного твердения бетона или при эксплуатации во влажных условиях, когда все поры и капилляры заполнены водой. В этом случае максимальную равновесную влажность бетона определяют по формуле:

Wb, max = nρ w1, (9.6)

где n - пористость бетона;

ρ w - плотность воды, равная 1000 кг/м3;

ρ 1 - плотность бетона естественной влажности.

Равновесную влажность бетона в зависимости от относительной расчетной влажности воздуха, при которой будет эксплуатироваться железобетонная конструкция, и от расхода цемента принимают по табл. 9.2.

Таблица 9.2

Расход цемента, кг на 1 м3 бетона Весовая влажность бетона Wb · 102 (кг/кг) в зависимости от относительной расчетной влажности воздуха, %
0, 6 0, 9 1, 2
1, 0 1, 3 2, 5
1, 5 2, 1 3, 0
2, 0 2, 7 3, 8
3, 0 3, 9 5, 4
Примечание. Промежуточные значения Wb принимают по линейной интерполяции.

При применении пористого крупного заполнителя равновесную влажность бетона, имеющего плотность более 1200 кг/м3, следует увеличить на объемную эксплуатационную влажность крупного заполнителя Wэз, м33:

Wэз = VзWbзρ 10-3, (9.7)

где Vз - относительный объем пористого крупного заполнителя в бетоне;

Wbз - равновесная влажность крупного пористого заполнителя по массе, кг/кг. Для керамзита среднюю равновесную влажность Wbз по массе можно принимать в зависимости от относительной расчетной влажности воздуха, при которой будет эксплуатироваться конструкция, по табл. 9.3.

Таблица 9.3

Расчетная относительная влажность воздуха, % Равновесная влажность керамзита Wbз · 102, кг/кг
0, 75
1, 20
1, 50
2, 80

9.5 Как видно из формулы (9.1), значение критерия хрупкого разрушения бетона F зависит от физических свойств бетона, которые незначительно отличаются для разных составов, и от объемной эксплуатационной влажности бетона, которая существенно влияет на значение этого критерия. Чем больше влажность бетона, тем больше значение критерия хрупкого разрушения, и тем больше опасность возможности хрупкого разрушения бетона во время пожара.

Наибольшую влажность бетон имеет непосредственно после изготовления железобетонной конструкции, затем он высыхает. Поэтому необходимо рассматривать возможность хрупкого разрушения бетона при пожаре как во время строительства, так и в период пуска объекта в эксплуатацию, а также при эксплуатации сооружения в зависимости от относительной расчетной влажности воздуха.

9.6 Бетон, имеющий значение критерия хрупкого разрушения F > 4, необходимо защитить от хрупкого разрушения во время пожара следующими мерами:

1) повышением уровня пожарной безопасности путем обеспечения возможности ликвидации пожара на начальной стадии;

2) снижением расчетной относительной влажности воздуха в помещении;

3) дополнительным конструктивным армированием поверхностного слоя бетона со стороны нагрева арматурной сеткой с ячейками 25 - 70 мм и диаметром арматуры 0, 5 - 1, 0 мм;

4) нанесением огнезащитного покрытия на нагреваемую поверхность бетона;

5) устройством металлической облицовки со стороны нагреваемой поверхности;

6) применением бетонов с ограниченным расходом цемента; уменьшенным В/Ц; с крупным заполнителем, обладающим более низким коэффициентом температурного расширения.

9.7 Предел огнестойкости по целостности - по образованию сквозных трещин в плитах, стенах и стенках двутавровых балок при двухстороннем нагреве - наступает при прогреве бетонного сечения по всей толщине элемента до критической температуры нагрева бетона, когда в бетоне нарушается структура. Оценка возможности потери целостности за счет возникновения прогрева бетона по сечению выше критической температуры при пожаре производится путем анализа температур прогрева элементов по всему сечению (см. приложения А, Б). Критические температуры нагрева бетона представлены в п. 4.12.

10 Конструктивные требования, повышающие предел огнестойкости железобетонных конструкций

10.1 Чем больше защитный слой бетона, тем выше предел огнестойкости конструкции. Если толщина защитного слоя бетона больше 60 мм для тяжелого бетона и 80 мм для легкого бетона, защитный слой бетона может иметь армирование со стороны огневого воздействия в виде сетки из стержней диаметром 1 - 2 мм с ячейками не более 70× 70 мм.

10.2 В железобетонных колоннах с продольной арматурой в количестве более четырех стержней в сечении нецелесообразно устанавливать всю арматуру около обогреваемой поверхности. Для повышения предела огнестойкости колонн рабочую арматуру следует установить в максимально возможном удалении от поверхности, ближе к ядру сечения колонн, если это позволяют усилия.

10.3 Колонны большого поперечного сечения с меньшим процентом армирования лучше сопротивляются огневому воздействию, чем колонны меньшего поперечного сечения с большим процентом армирования.

10.4 Предел огнестойкости колонн с косвенным армированием в виде арматурных сварных поперечных сеток, установленных с шагом не более 250 мм, или со спиральной арматурой увеличивается в 1, 2 раза.

10.5 Колонны и балки с жесткой арматурой, расположенной в середине сечения, имеют значительно больший предел огнестойкости по потере несущей способности по сравнению с балками и колоннами, армированными стержневой арматурой, расположенной около обогреваемой поверхности.

10.6 В балках, при расположении арматуры разного диаметра и на разных уровнях, следует располагать арматуру большего диаметра дальше от обогреваемой поверхности при пожаре.

10.7 Для повышения предела огнестойкости балок рекомендуется регулировать форму сечения балок: предпочтительнее широкие балки, а не узкие и высокие. В качестве основной арматуры балок рекомендуется использовать более двух стержней, наиболее предпочтительно размещать арматуру в несколько рядов, максимально возможно поместив арматуру вглубь сечения от обогреваемой поверхности.

10.8 На опорах между соседними балками и между балкой и стеной должен быть зазор, который позволит балке свободно удлиняться в процессе огневого воздействия. Ширина зазора должна быть не менее 0, 05l, где l - пролет балки.

10.9 В плитах целесообразно иметь поперечную арматуру, которая предохранит рабочую горизонтальную арматуру от выпучивания во время пожара.

10.10 В плитах на стальном профилированном настиле бетон или арматура в гофрах должны соединяться с настилом во избежание его отслоения при огневом воздействии.

Для повышения огнестойкости многопролетных плит из монолитного железобетона на стальном профилированном настиле до R150 в первом крайнем пролете плиты следует увеличить площадь арматуры на 30 % сверх расчета, сечение арматуры на первой промежуточной опоре предусмотреть в два раза больше, чем в первом пролете.

10.11 Предел огнестойкости статически неопределимой конструкции больше предела огнестойкости статически определимой конструкции на 75 %, если площадь сечения арматуры на опоре, где действует отрицательный момент, больше чем в пролете в 1, 25 раза; на 100 %, если - в 1, 5 раза; на 125 %, если - в 1, 75 раза и на 150 %, если - в 2 раза.

Влияние арматуры на опорах учитывают, если 20 % арматуры расположено в пролете и 80 % доводится не менее чем на 0, 4l у крайней опоры, и не менее 0, 15l на промежуточных опорах.

10.12 Для того, чтобы конструкция температурного шва могла выдерживать высокотемпературное огневое воздействия при пожаре и сохранять достаточные теплоизоляционные свойства, необходимо заполнить его негорючими материалами с низкой теплопроводностью. Ширина температурного шва должна быть не менее 0, 0015l, где l - расстояние между температурными швами.

10.13 Во время пожара защитный слой бетона предохраняет арматуру от быстрого нагрева ее до критической температуры. Предел огнестойкости увеличивается, если применить огнезащитное покрытие. Известково-цементная штукатурка толщиной 15 мм, гипсовая - толщиной 10 мм, вермикулитовая - толщиной 5 мм или теплоизоляция из минерального волокна толщиной 5 мм эквивалентны увеличению на 10 мм толщины защитного слоя тяжелого бетона. Огнезащитные покрытия, применяемые для повышения предела огнестойкости конструкций, также могут иметь армирование.

10.14 При применении в стеновых панелях или перекрытиях горючего утеплителя следует предусматривать огнезащиту этого утеплителя по периметру несгораемыми материалами.

10.15 Засыпки и пол из негорючих материалов при теплотехническом расчете включаются в общую толщину плиты и повышают ее предел огнестойкости. Горючие изоляционные слои, уложенные на цементную подготовку, не снижают предела огнестойкости плит. Дополнительные слои стяжки и штукатурки могут быть отнесены к толщине плиты.


Поделиться:



Последнее изменение этой страницы: 2017-05-06; Просмотров: 90; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.022 с.)
Главная | Случайная страница | Обратная связь