Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Математическая обработка результатов прямых



Равноточных измерений

Арифметическая средина результатов равноточных измерений. Пусть имеем результаты многократных равноточных измерений одной величины: l1, l2, …, ln. Рассмотрим их среднее арифметическое

li= Х + Δ i (i = 1, 2, … n)

Поэтому напишем

= X -

Согласно с увеличением числа измерений сумма случайных погрешностей, деленная на их число, стремится к нулю, и, следовательно, среднее арифметическое L стремится к истинному значению Х. Поэтому значение определяемой величины принимают равным среднему арифметическому.

Средняя квадратическая погрешность арифметической средины. Пусть точность результатов измерений l1, l2, …, ln характеризуется средними квадратическими погрешностями

m1 = m2 = ¼ = mn = m

и требуется найти среднюю квадратическую погрешность M арифметической средины.

Представим формулу (5.7) в следующем виде:

L = .

Среднюю квадратическую погрешность арифметической средины найдем как погрешность функции измеренных величин по формуле (5.6)

 

или

Формула (5.8) показывает, что погрешность арифметической средины с ростом числа измерений убывает пропорционально квадратному корню из этого числа. Так, чтобы погрешность среднего арифметического уменьшить в 2 раза, число измерений надо увеличить в 4 раза.

Обработка результатов равноточных измерений. Математическая обработка ряда результатов l1, l2, …, ln прямых равноточных измерений одной величины выполняется в следующей последовательности:

1. Вычисляют среднее арифметическое L

.

2. Вычисляют поправки к vi результатам измерений

(i = 1, 2, …, n)

Контролем правильности вычислений служит сумма поправок, которая должна быть близка к нулю.

3. Вычисляют среднюю квадратическую погрешность одного измерения по формуле Бесселя:

.

Значение m вычисляют с двумя-тремя значащими цифрами.

4. Вычисляют среднюю квадратическую погрешность среднего арифметического

.

Математическая обработка результатов прямых

Неравноточных измерений

Веса измерений. Неравноточными называют измерения, выполненные приборами различной точности, разным числом приемов, в различных условиях.

При неравноточных измерениях точность каждого результата измерений характеризуется своей среднеквадратической погрешностью. Наряду со средней квадратической погрешностью при обработке неравноточных измерений пользуются относительной характеристикой точности – весом измерения. Вес i-го измерения вычисляют по формуле

где с – произвольная постоянная, назначаемая вычислителем, mi – средняя квадратическая погрешность i-го измерения.

Так, имея ряд результатов измерений l1, l2, ..., ln, со средними квадратическими погрешностями m1 , m2, ..., mn, определяют их веса:

p1 = c / m12, p2 = c / m22 , ..., pn = c / mn2.

Часто постоянную с для удобства дальнейших вычислений назначают так, чтобы веса pi оказались целыми числами.

Рассмотрим смысл произвольной постоянной с. Предположим, что в результате фиксирования значения с вес j-го измерения стал равен 1, то есть pj = c / mj2 = 1. Отсюда находим c = mj2. Следовательно, постоянная с есть квадрат средней квадратической погрешности m2 такого измерения, вес которого принят за единицу (с = m2).

Теперь

.

Кратко m называют средней квадратической погрешностью единицы веса.

Вес арифметической средины.

Рассмотрим вес арифметической средины равноточных измерений. Примем в формуле за единицу вес одного измерения, то есть m = m, и запишем .

Тогда согласно вес Р арифметической средины L будет равен

P = = n.

Вывод.

Если за единицу веса принят вес одного измерения, то вес арифметической средины равен числу измерений.

Следствие.

Если результат l измерения имеет вес р, то можем считать, что l является средним арифметическим из р измерений с весом 1.

Общая арифметическая средина результатов неравноточных измерений. Пусть имеем результаты многократных неравноточных измерений одной величины: l1, l2, …, ln, выполненных с весами p1, p2, …, pn.

Представим каждый из результатов li (i = 1, 2, …, n) как среднее из pi результатов с весом 1. Получим такой ряд результатов равноточных измерений:

l1 - результат p1 измерений с весом 1,

l2 - результат p2 измерений с весом 1,

¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼ ¼

ln - результат pn измерений с весом 1,

где общее число измерений с весом 1 равно p1 + p2 +¼ + pn.

Нами составлен ряд результатов равноточных измерений, позволяющий найти окончательное значение измеряемой величины как среднее арифметическое из всех результатов измерений

.

Значение, вычисляемое по формуле, называют общей арифметической срединой или весовым средним.

Оценки точности результатов неравноточных измерений. Приведем без вывода формулы характеристик точности, используемых при обработке прямых неравноточных измерений.

Средняя квадратическая погрешность m измерения, имеющего вес, равный единице:

- формула Гаусса: .

Формула применяется, когда известно достаточно точное, близкое к истинному, значение X измеряемой величины.

- формула Бесселя: ,

где vi - поправки к результатам измерений:

.

Средняя квадратическая погрешность общей арифметической средины

Обработка результатов неравноточных измерений. Математическая обработка ряда результатов прямых неравноточных измерений одной величины выполняется в следующей последовательности.

1. Вычисление весового среднего (общей арифметической средины)

.

2. Вычисление поправок к результатам измерений:

(i = 1, 2, …, n).

Контролем правильности вычислений служит равенство

3. Вычисление средней квадратической погрешности одного измерения по уклонениям от арифметической средины, используя формулу Бесселя для неравноточных измерений:

.

4. Вычисление средней квадратической погрешности среднего весового

.


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 233; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.026 с.)
Главная | Случайная страница | Обратная связь