Архитектура Аудит Военная наука Иностранные языки Медицина Металлургия Метрология
Образование Политология Производство Психология Стандартизация Технологии


Кондуктометрическое титрование



Кондуктометрическое титрование - метод определения концентрации вещества, основанный на изменении удельной проводимости раствора при титровании. Изменение k связано с изменением концентраций ионов с различной подвижностью, происходящим при химических реакциях в титруемом растворе. Кондуктометрическое титрование можно проводить в окрашенных или мутных растворах. При нём не следует опасаться перетитровать раствор, более того, для нахождения точки эквивалентности это даже необходимо. Кривые титрования, представляющие собой зависимость k от объёма V титранта, добавляемого к исследуемому раствору, имеют излом в точке эквивалентности, причём форма кривых зависит от природы титранта и титруемого вещества.

При кондуктометрическом титровании наиболее широко используются реакции кислотно-основного взаимодействия. При этом возможны следующие типичные случаи.

1) Титрование раствора сильной кислоты раствором сильного основания. Кривая титрования имеет вид, показанный на рис. 3, а.

 
 

 


Рис. 3. Кривые кондуктометрического титрования

а – сильной кислоты сильным основанием, б – слабой кислоты сильным основанием, в – смеси сильной и слабой кислот сильным основанием

При постепенном добавлении к раствору кислоты (например, HCl) раствора основания (например, NaOH) концентрация ионов водорода уменьшается из-за связывания их гидроксид-ионами с образованием воды. Одновременно в растворе появляются ионы Na+, концентрация которых всё время увеличивается. Подвижность ионов Н+ намного больше подвижности ионов Na+. Поэтому проводимость раствора заметно уменьшается вплоть до точки эквивалентности, при которой достигается минимальное значение k. После связываания всех ионов Н+, когда в титруемом растворе появляются всё новые ионы ОН-, а вместе с ними и ионы Na+, проводимость начинает увеличиваться. Благодаря этому на кривой титрования в точке эквивалентности появляется излом. По его положению определяется точный объём титранта, пошедший на титрование.

2) Титрование раствора слабой кислоты раствором сильного основания. Кривая титрования имеет вид, показанный на рис. 3, б. В этом случае при добавлении раствора сильного основания (например, NaOH) к раствору слабой кислоты (например, СН3СООН) концентрация ионов водорода вплоть до точки эквивалентности будет оставаться практически постоянной, так как титруются только свободные ионы Н+, возникающие при диссоциации слабой кислоты. Проводимость при этом будет несколько возрастать за счёт увеличения концентрации ионов Na+. После достижения точки эквивалентности зависимость проводимости от объёма титранта будет иметь такой же характер, как и предыдущем случае.

2) Титрование смеси растворов сильной и слабой кислот раствором сильного основания. Общий вид кривой титрования показан на рис. 3, в. Из-за присутствия в растворе сильной кислоты диссоциация слабой подавляется и вначале в реакцию нейтрализации будут вступать только ионы водорода, принадлежащие сильной кислоте. После того, как вся она будет оттитрована, начнётся диссоциация и последующая нейтрализация слабой кислоты и на кривой титрования появится первый излом, отвечающий объёму титранта, необходимому для полной нейтрализации сильной кислоты. Далее кривая титрования подчиняется тем же закономерностям, что и в случае 2.

На практике ветви кривых титрования могут получаться нелинейными, что связано с разбавлением раствора при добавлении титранта. Во избежание этого следует применять растворы титранта, значительно более концентрированные, чем титруемые растворы (обычно в 10 раз).

ЭЛЕКТРОДНЫЕ ПРОЦЕССЫ И ЭЛЕКТРОДВИЖУЩИЕ СИЛЫ

Основные понятия и величины

Величина электрического зарядаQ, перемещаемого из одной точки пространства в другую, измеряется в кулонах. Кулон(Кл)равен электрическому заряду, проходящему через поперечное сечение проводника при силе тока 1 ампер за время 1 с (1 Кл = 1 А·с). Разность потенциальной энергии единичных зарядов в двух различных точках пространства измеряется в вольтах (1 В = 1 Дж/Кл).

Для того, чтобы между двумя точками пространства возник электрический ток, между ними должно существовать некоторое напряжение, равное работе электрического поля по перемещению единичного положительного заряда из одной точки в другую. В электростатическом поле эта работа не зависит от пути, по которому перемещается заряд; при этом напряжение совпадает с разностью потенциалов точек. Если же рассматривается напряжение не в потенциальном поле, а в каком-либо теле (проводнике) или в системе из нескольких проводников, то работа переноса заряда зависит от пути. В этом случае напряжение равно электродвижущей силе Е.

Электронопроводящие фазы (металлы или полупроводники), контактирующие с ионными проводниками (растворами электролитов, которые в электрохимии часто называют просто электролитами), называются электродами. Различают обратимые и необратимые электроды. На обратимых электродах протекают обратимые окислительно-восстановительные реакции. При перемене направления электрического тока меняется на противоположное и направление реакции. При этом независимо от направления тока в приэлектродном пространстве присутствуют одни и те же ионы (или молекулы). На необратимых электродах при изменении направления тока происходят реакции, приводящие к образованию ионов или молекул, отличающихся от тех, которые присутствовали в приэлектродном пространстве до этого. Примером обратимого электрода служит медь в растворе, содержащем ионы Cu2+. При прохождении тока в противоположных направлениях идут реакции Cu2+ + 2e-®Cu0 и Cu0®Cu2+ + 2e-. То есть, можно сказать, что на медном электроде при этом протекает обратимая реакция Cu0Û Cu2+ + 2e-. Та же медь, помещённая в раствор кислоты, будет необратимым электродом, так как при различных направлениях тока на её поверхности будут протекать реакции, не являющиеся обратимыми по отношению друг к другу: Cu2+ + 2e-® Cu0 и 2Н+ + 2e-® Н2.

Обратимые электроды, соединённые друг с другом металлическим проводником, образуют цепь. В цепи также должен иметься контакт между растворами электролитов, осуществляемый с помощью т. н. электролитических мостиков или ключей. Цепь может состоять из одной или из нескольких гальванических (электрохимических) ячеек, в каждую из которых входят ионопроводящий электролит и два разнородных электрода. Иногда электрод вместе с контактирующим с ним электролитом называют полуэлементом. В зависимости от того, как работает электрохимическая ячейка, она будет иметь различное название. Если ячейка служит для получения электрического тока за счёт протекающей в ней окислительно-восстановительной реакции, то она называется х имическим источником тока (ХИТ) или гальваническим элементом (ГЭ). Если же через ячейку пропускается электрический ток от внешнего источника, приводящий к электрохимическим превращениям в ней, т. е. к электролизу, она называется электролизёром.

Электрохимические реакции, протекающие в электролизёре или в гальваническом элементе, представляют собой окислительно-вос­ста­но­ви­тельные реакции, которые осуществляются таким образом, что процессы окисления и восстановления разделены в пространстве. При электролизе или при работе гальванического элемента через границу, отделяющую электрод от электролита, проходят электроны. Электрод, отдающий электроны в раствор, и на поверхности которого происходит реакция восстановления, принято называть катодом, а электрод, принимающий электроны из раствора, и на поверхности которого идет реакция окисления, - анодом. Таким образом, в гальваническом элементе катод заряжается положительно, а анод – отрицательно. В электролизёре, наоборот, анод заряжается положительно, а катод - отрицательно.

Термодинамические свойства электрода могут быть описаны с помощью электродного потенциала, определяемого как работа, необходимая для переноса единичного заряда (электрона) из бесконечно удалённой точки контактирующего раствора электролита на поверхность электрода.

Наиболее принятой в настоящее время теорией, объясняющей возникновение скачка потенциала на поверхности раздела “металл - раствор”, является сольватационная теория электродного потенциала. Её основы были высказаны Л.В.Писаржевским (1912 - 14), затем были развиты Н.А.Из­га­ры­ше­вым и другими исследователями. Согласно этой теории скачок потенциала на границе “металл - раствор” обусловлен двумя процессами: 1) диссоциацией атомов металла на ионы и электроны внутри металла; 2) сольватацией ионов металла, находящихся на поверхности, при соприкосновении с раствором. Сольватированные ионы выходят в раствор. Поверхность металла при этом заряжается отрицательно. Положительно заряженные ионы металла электростатическими силами удерживаются вблизи поверхности раздела фаз, образуя так называемый двойной электрический слой.

Разность электрических потенциалов двух электродов при отсутствии тока называется электродвижущей силой (э. д. с. или ЭДС) Е гальванического элемента. Измерение ЭДС можно использовать для получения термодинамических величин и, наоборот, с помощью термодинамических величин, найденных другим путём, можно рассчитать ЭДС, так как эта величина зависит от константы равновесия окислительно-восстановительной реакции, протекающей в гальваническом элементе.


Поделиться:



Последнее изменение этой страницы: 2017-05-11; Просмотров: 138; Нарушение авторского права страницы


lektsia.com 2007 - 2024 год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! (0.011 с.)
Главная | Случайная страница | Обратная связь